

Adaptive Conformal Predictions for Time Series

Margaux Zaffran^[1,2,3] Olivier Féron^[1] Yannig Goude^[1] Julie Josse^[2] Aymeric Dieuleveut^[3] ^[1]Electricité De France, Paris, France ^[2]INRIA, Montpellier, France ^[3]Ecole Polytechnique, Paris, France

Motivations and setting

Control validity: produce predictive intervals, enjoying theoretical guarantees on their coverage with few assumptions. Optimize efficiency: intervals as small as possible. Setting in time series

- Data: T_0 observations $(x_1, y_1), \ldots, (x_{T_0}, y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$.
- Aim: predict for T_1 subsequent observations $x_{T_0+1}, \ldots, x_{T_0+T_1}$. \hookrightarrow Build the smallest interval \hat{C}^t_{α} such that:

 $\mathbb{P}\left\{Y_t \in \hat{C}^t_{\alpha}\left(X_t\right)\right\} \ge 1 - \alpha, \text{ for } t \in [T_0 + 1, T_0 + T_1].$

Summary

Conformal prediction gives predictive sets under exchangeability, not time series. ACI can be used but require a learning rate γ.
Theory on ACI's efficiency depending on the learning rate γ.
Algorithm based on expert aggregation, to avoid choosing γ.
Numerical tests: synthetic and French electricity prices.

Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Use an effective quantile level based on a recursive equation and a learning rate γ : $\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathbb{1} \left\{ y_t \notin \hat{C}_{\alpha_t}(x_t) \right\} \right).$

Illustration: ACI with $\gamma = 0$, $\gamma = 0.01$ and $\gamma = 0.05$.

Theory

AgACI

1 Impact of the learning rate γ

Exchangeable case

Theorem 1 (informal)

Assume exchangeable scores and perfect calibration. As $\gamma \to 0$: Average length of intervals from ACI using γ = Average length of intervals from Split Conformal Prediction $+ \gamma \times \underbrace{C(\alpha, \text{distribution of the data})}_{>0 \text{ in general}}$.

Auto-regressive case: $\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1}$.

Theorem 2 (informal)

Experts (ACI with many γ) aggregation (Cesa-Bianchi and Lugosi, 2006).

- One algorithm for the upper bound, another for the lower bound.
- Based on the pinball loss of level $1 \frac{\alpha}{2}$, or of level $\frac{\alpha}{2}$.

3 Numerical results

Assume auto-regressive residuals and perfect calibration. There exists an optimal $\gamma^* > 0$ minimizing the average length for high φ .

Conclusion: choosing γ is crucial but difficult.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games.Gibbs, I. and Candès, E. (2021). Adaptive Conformal Inference Under Distribution Shift. NeurIPS.

 $Y_t = 10\sin\left(\pi X_{t,1}X_{t,2}\right) + 20\left(X_{t,3} - 0.5\right)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$

with $X_{t,\cdot} \sim \mathcal{U}([0,1])$ and $\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t$, with ξ_t a white noise of variance σ^2 , such that $\operatorname{Var}(\varepsilon_t)$ is 10.

- Random forest are used as regressor.
- For each setting: $\begin{cases} 300 \text{ points, last 100 kept for prediction} \\ 500 \text{ repetitions} \end{cases}$
 - OSSCP (adapted from Lei et al., 2018)
 Offline SSCP (ad. from Lei et al., 2018)
 × EnbPI (Xu & Xie, 2021)
 + EnbPI V2
 ACI (Gibbs & Candès, 2021), $\gamma = 0.01$ ACI (Gibbs & Candès, 2021), $\gamma = 0.05$ AGACI

