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Motivations and setting

Control validity: produce predictive intervals, enjoying the-
oretical guarantees on their coverage with few assumptions.
Optimize efficiency: intervals as small as possible.
Setting in time series
•Data: T0 observations (x1, y1), . . . , (xT0, yT0) in Rd ×R.
•Aim: predict for T1 subsequent observations xT0+1, . . . , xT0+T1.
↪→Build the smallest interval Ĉt

α such that:

P
{
Yt ∈ Ĉt

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1, T0 + T1K .

Summary

Conformal prediction gives predictive sets under exchangeability,
not time series. ACI can be used but require a learning rate γ.
1 Theory on ACI’s efficiency depending on the learning rate γ.
2 Algorithm based on expert aggregation, to avoid choosing γ.
3 Numerical tests: synthetic and French electricity prices.

Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Use an effective quantile level based on a recursive equation and a learning rate γ: αt+1 := αt + γ︸︷︷︸
≥0

(
α− 1

{
yt /∈ Ĉαt(xt)

})
.

Illustration: ACI with γ = 0, γ = 0.01 and γ = 0.05.
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Theory

For any distribution:∣∣∣∣ 1
T1

T0+T1∑
t=T0+1

1
{
yt ∈ Ĉαt(xt)

}
︸ ︷︷ ︸

Average coverage

−(1− α)
∣∣∣∣ ≤ 2

γT1

1 Impact of the learning rate γ

Exchangeable case

Theorem 1 (informal)

Assume exchangeable scores and perfect calibration. As γ → 0:
Average length of intervals from ACI using γ

= Average length of intervals from Split Conformal Prediction
+ γ × C(α, distribution of the data)︸ ︷︷ ︸

>0 in general

.

Auto-regressive case: εt+1 = ϕεt + ξt+1.

Theorem 2 (informal)

Assume auto-regressive residuals and perfect calibration. There
exists an optimal γ∗ > 0 minimizing the average length for high ϕ.
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Conclusion: choosing γ is crucial but difficult.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games.
Gibbs, I. and Candès, E. (2021). Adaptive Conformal Inference Under Dis-
tribution Shift. NeurIPS.

2 AgACI

•Experts (ACI with
many γ) aggregation
(Cesa-Bianchi and
Lugosi, 2006).
•One algorithm for the
upper bound, another
for the lower bound.
•Based on the pinball
loss of level 1− α

2 , or
of level α2 .
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3 Numerical results

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

with Xt,· ∼ U([0, 1]) and εt+1 = ϕεt + ξt+1 + θξt , with ξt a white
noise of variance σ2, such that Var(εt) is 10.
•Random forest are used as regressor.

• For each setting:
{

300 points, last 100 kept for prediction
500 repetitions .
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OSSCP (adapted from Lei et al., 2018)
O✏ine SSCP (ad. from Lei et al., 2018)
EnbPI (Xu & Xie, 2021)
EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01
ACI (Gibbs & Candès, 2021), � = 0.05
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' = ✓ =0.95
' = ✓ =0.99

 


	References

