Adaptive Conformal Predictions for Time Series

Margaux Zaffran^[1,2,3] Yannig Goude^[1] Olivier Féron^[1]

^[1]Electricité De France, Paris, France ^[2]INRIA, Montpellier, France ^[3]Ecole Polytechnique, Paris, France

Control validity

Produce **predictive intervals** around forecasts, enjoying **theoreti**cal guarantees on their coverage with few assumptions. **Optimize efficiency**

The intervals should be **as small as possible**.

Bad example: outputting $\begin{cases} 10 & 0.076 & 0.016 \\ \emptyset & 10\% & 0.016 \\ 10\% & 0.016 & 0.016 \end{cases}$ is ' $\int \mathbb{R} 90\%$ of the time is valid but **useless!** Setting in time series

• Data: T_0 observations $(x_1, y_1), \ldots, (x_{T_0}, y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$.

• Aim: predict for T_1 subsequent observations $x_{T_0+1}, \ldots, x_{T_0+T_1}$.

 \hookrightarrow Build the smallest interval \hat{C}^t_{α} such that:

 $\mathbb{P}\left\{Y_t \in \hat{C}^t_{\alpha}(X_t)\right\} \ge 1 - \alpha, \text{ for } t \in [\![T_0 + 1, T_0 + T_1]\!].$

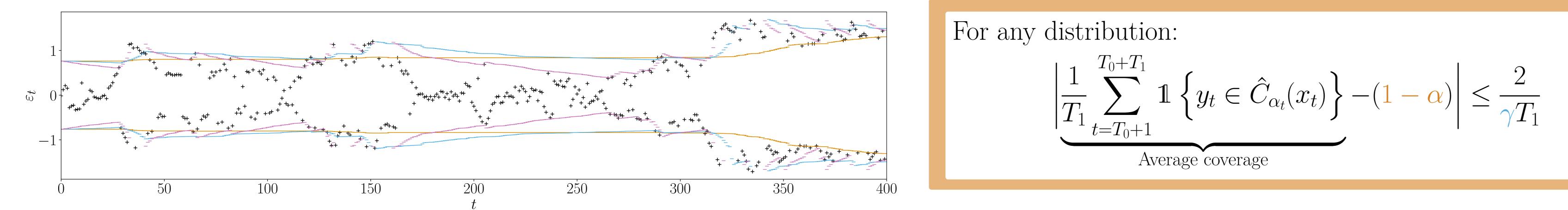
Summary

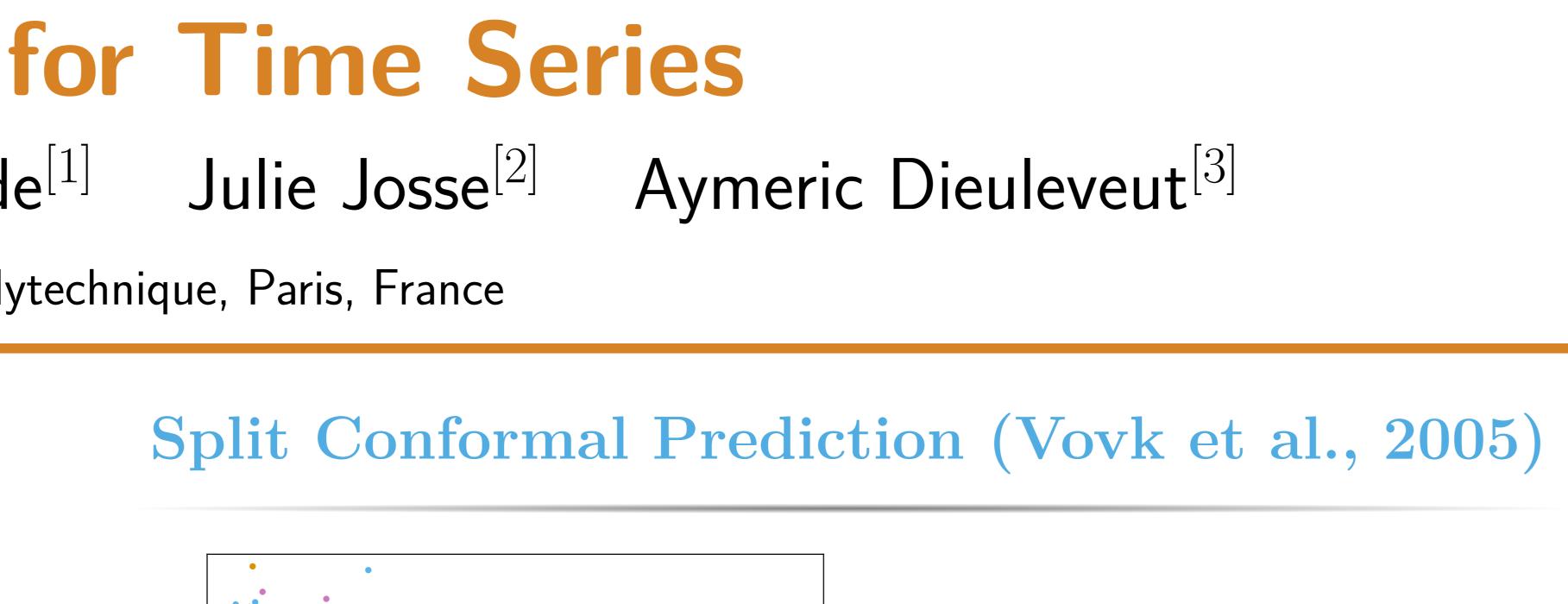
Conformal prediction gives predictive intervals under exchangeability, not time series. ACI can be used but require a learning rate γ .

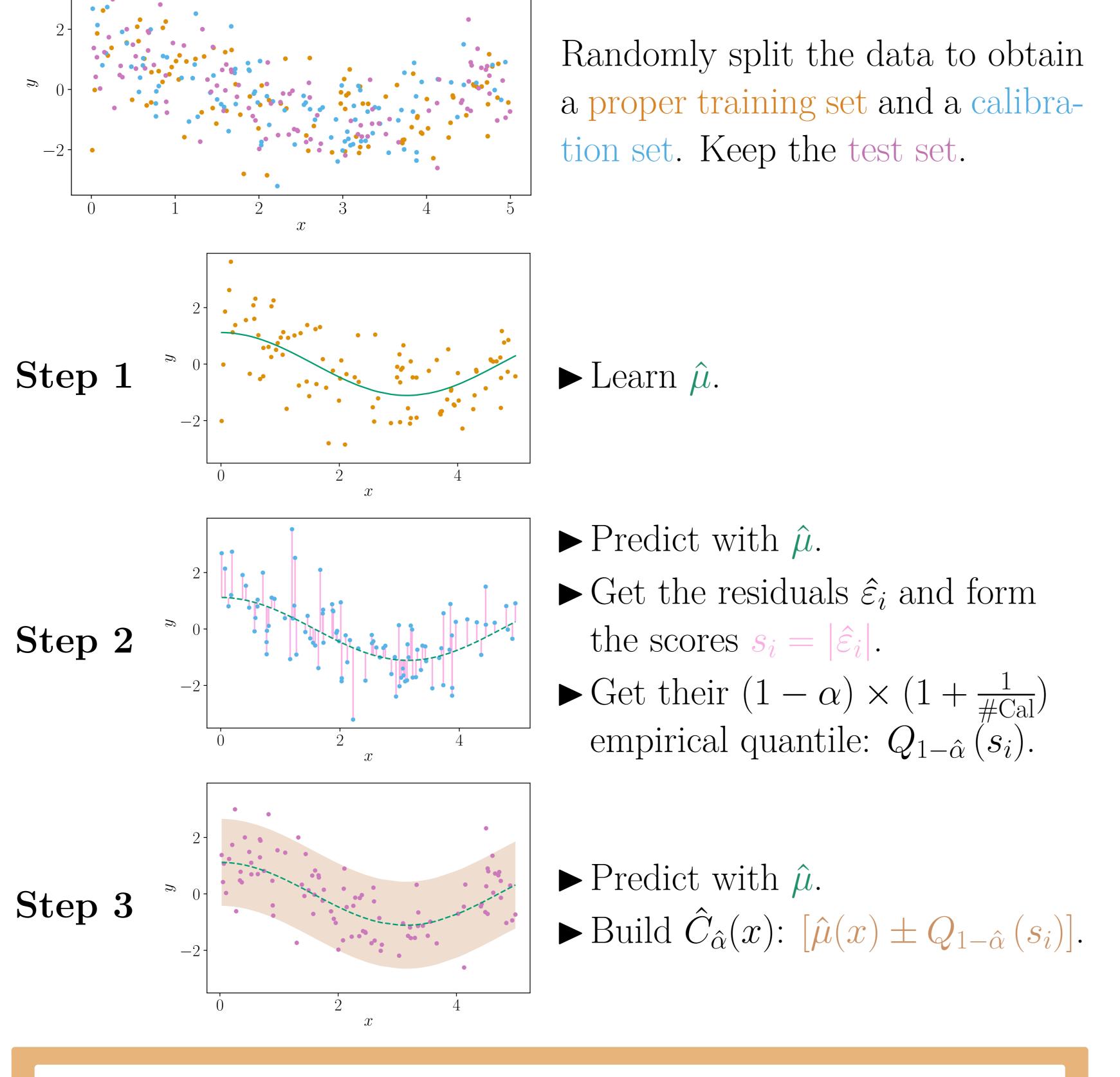
- **• Theory** on ACI's efficiency depending on the learning rate γ .
- **•** Algorithm based on expert aggregation, to avoid choosing γ .
- **Numerical tests**: synthetic and French electricity prices.

Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Use an effective quantile level based on a recursive equation and a learning rate γ : $\alpha_{t+1} := \alpha_t + \gamma_t \left(\alpha - \mathbb{1} \left\{ y_t \notin \hat{C}_{\alpha_t}(x_t) \right\} \right).$ **Illustration:** ACI with $\gamma = 0$, $\gamma = 0.01$ and $\gamma = 0.05$.







• Given any regression function $\hat{\mu}$

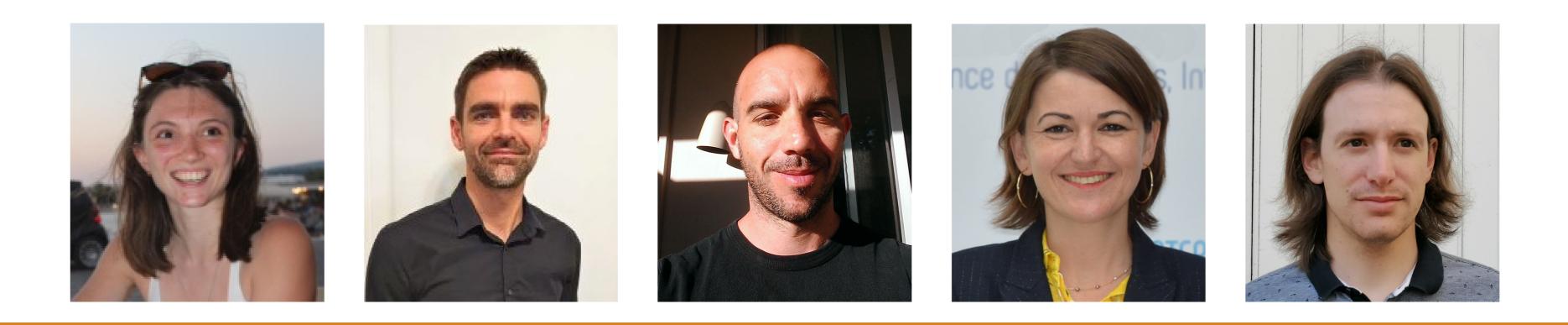
• For any sample size n (finite-sample)

• If the (X_i, Y_i) are **exchangeable**

$$\mathbb{P}\left(Y \in \hat{C}_{\hat{\alpha}}\left(X\right)\right) \ge 1 - \alpha$$

 \hookrightarrow what is essential is that the **scores** $\{s_i\}_i$ are exchangeable.

Theory



1 Impact of the learning rate γ

Exchangeable case

Theorem 1 (informal)

Assume exchangeable scores and perfect calibration. As $\gamma \to 0$:

Average length of intervals from ACI using γ

= Average length of intervals from Split Conformal Prediction

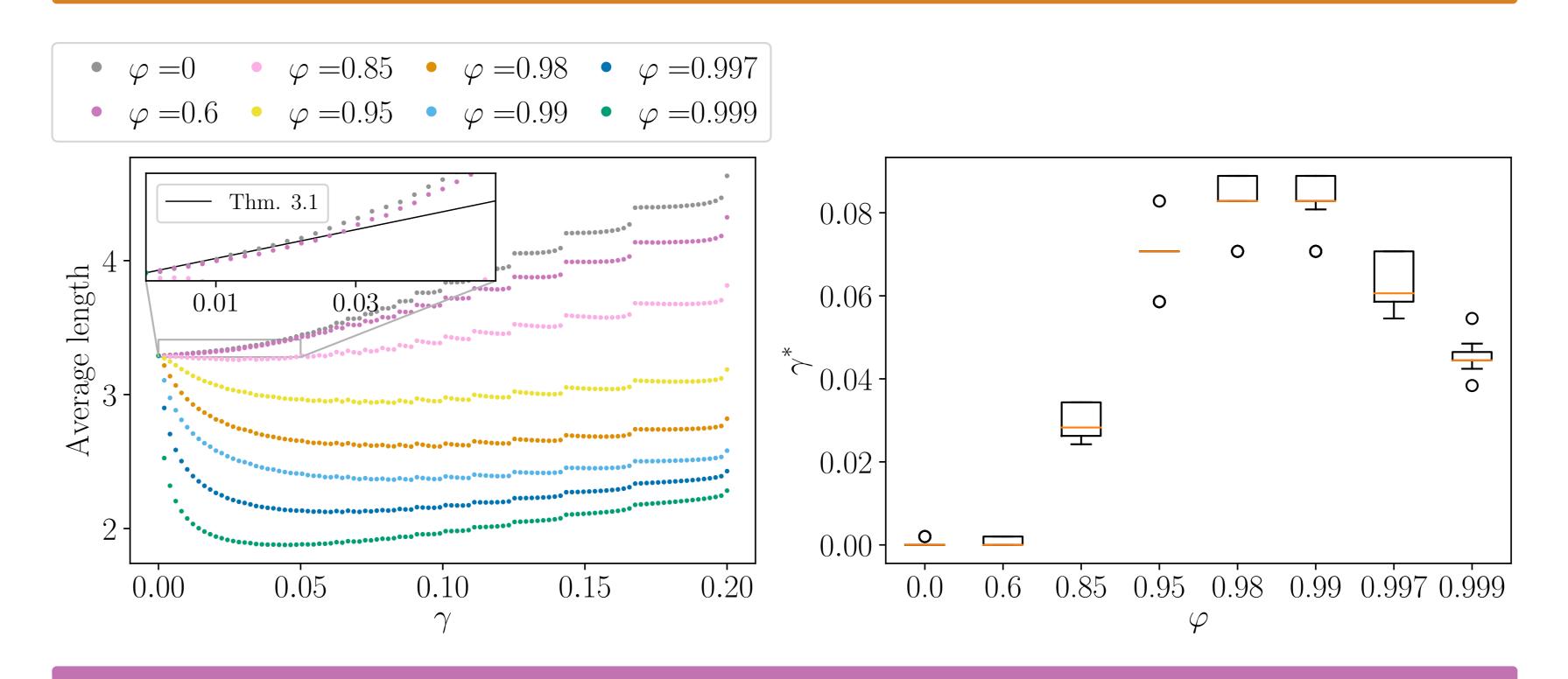
 $+ \gamma \times \mathcal{C}(\alpha, \text{distribution of the data}).$

>0 in general

Auto-regressive case: $\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1}$.

Theorem 2 (informal)

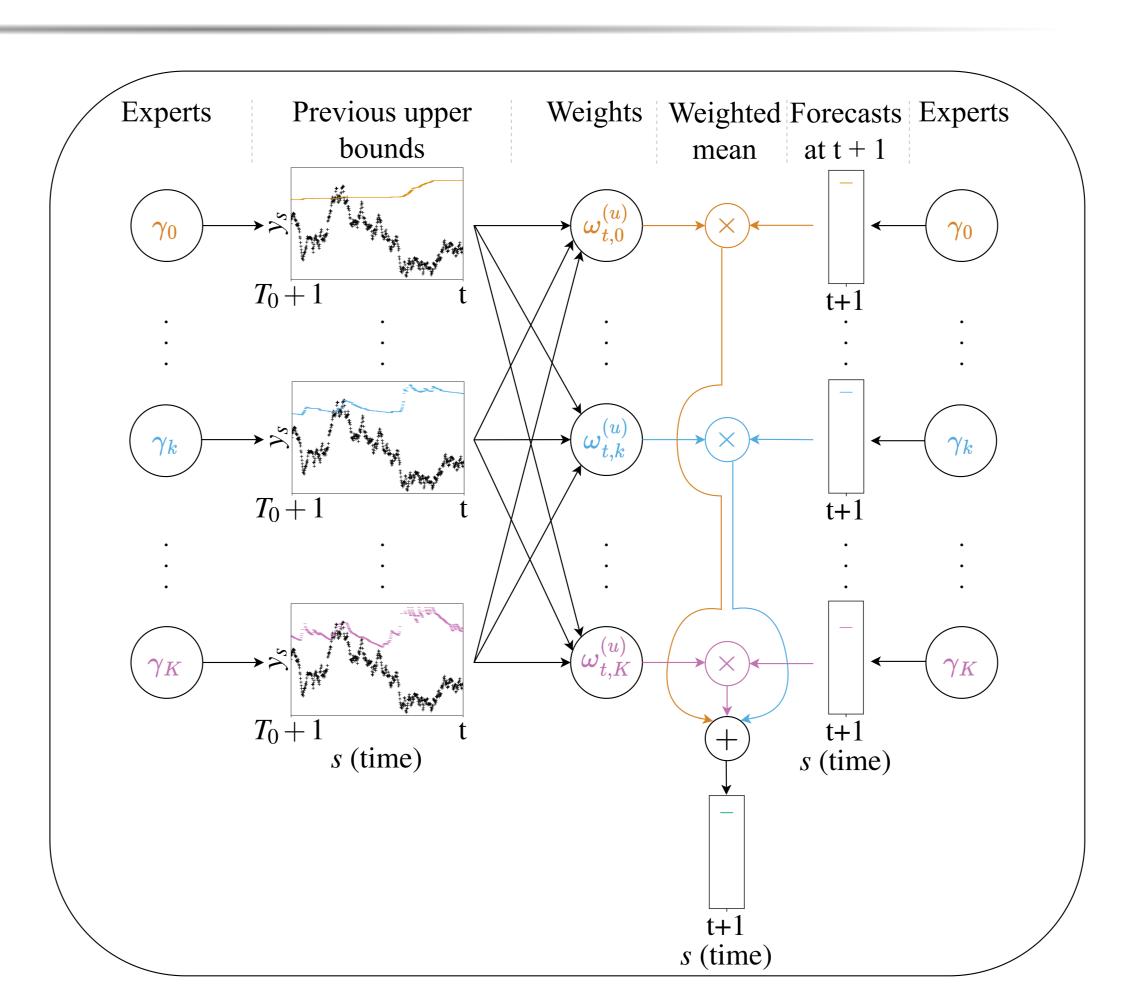
Assume auto-regressive residuals and perfect calibration. There exists an optimal $\gamma^* > 0$ minimizing the average length for high φ .

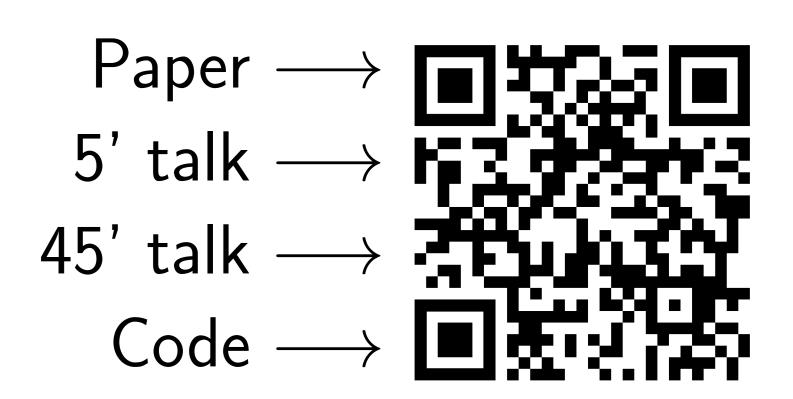


Conclusion: choosing γ is crucial but difficult.

2 AgACI

- Experts (ACI with many γ) aggregation (Cesa-Bianchi and Lugosi, 2006).
- One algorithm for the upper bound, another for the lower bound.
- Based on the pinball loss of level $1 - \frac{\alpha}{2}$, or of level $\frac{\alpha}{2}$.





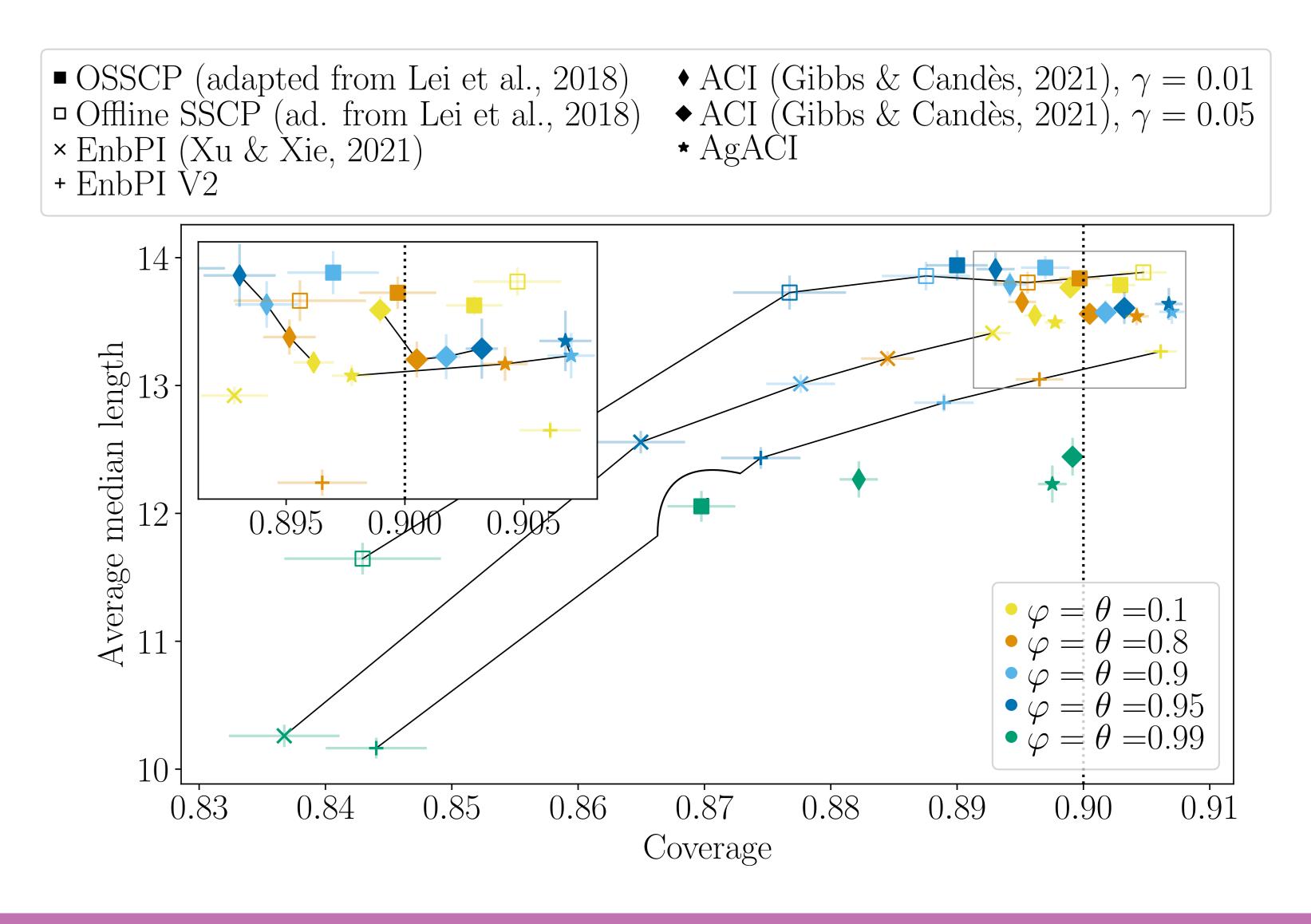
3 Numerical results

 $Y_t = 10\sin\left(\pi X_{t,1}X_{t,2}\right) + 20\left(X_{t,3} - 0.5\right)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$ with $X_{t,\cdot} \sim \mathcal{U}([0,1])$ and ε_t an ARMA(1,1) process:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$

with ξ_t is a white noise of variance σ^2 .

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- σ is fixed to keep the variance $Var(\varepsilon_t)$ constant to 10.
- Random forest are used as regressor.
- For each setting (pair variance and φ, θ):
- o 300 points, the last 100 kept for prediction and evaluation,
- $\circ 500$ repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.



- Increasing the temporal dependence impacts benchmarks validity.
- ACI is robust and maintains validity for some well-chosen γ .
- AgACI is robust and maintains validity without choosing γ .

Open directions

Theory on AgACI: is it asymptotically valid? Efficient?

Main references

Cesa-Bianchi, N. and Lugosi, G. (2006). *Prediction, learning, and games.* Gibbs, I. and Candès, E. (2021). Adaptive Conformal Inference Under Distribution Shift. NeurIPS. Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a Random World.