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Control validity
Produce predictive intervals around forecasts, enjoying theoreti-
cal guarantees on their coverage with few assumptions.
Optimize efficiency
The intervals should be as small as possible.

Bad example: outputting
{
R 90% of the time
∅ 10% of the time is valid but useless!

Setting in time series
•Data: T0 observations (x1, y1), . . . , (xT0, yT0) in Rd ×R.
•Aim: predict for T1 subsequent observations xT0+1, . . . , xT0+T1.
↪→Build the smallest interval Ĉt

α such that:
P
{
Yt ∈ Ĉt

α (Xt)
}
≥ 1− α, for t ∈

r
T0 + 1, T0 + T1

z
.

Summary

Conformal prediction gives predictive intervals under exchangeability,
not time series. ACI can be used but require a learning rate γ.
1 Theory on ACI’s efficiency depending on the learning rate γ.
2 Algorithm based on expert aggregation, to avoid choosing γ.
3 Numerical tests: synthetic and French electricity prices.

Split Conformal Prediction (Vovk et al., 2005)
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Randomly split the data to obtain
a proper training set and a calibra-
tion set. Keep the test set.

Step 1
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ILearn µ̂.

Step 2
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IPredict with µ̂.
IGet the residuals ε̂i and form
the scores si = |ε̂i|.

IGet their (1− α)× (1 + 1
#Cal)

empirical quantile: Q1−α̂ (si).

Step 3
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y IPredict with µ̂.
IBuild Ĉα̂(x): [µ̂(x)±Q1−α̂ (si)].

•Given any regression function µ̂
•For any sample size n (finite-sample)
• If the (Xi, Yi) are exchangeable

P
(
Y ∈ Ĉα̂ (X)

)
≥ 1− α

↪→ what is essential is that the scores {si}i are exchangeable.

Adaptive Conformal Inference (ACI, Gibbs and Candès, 2021)

Use an effective quantile level based on a recursive equation and a learning rate γ: αt+1 := αt + γ︸︷︷︸
≥0

(
α− 1

{
yt /∈ Ĉαt(xt)

})
.

Illustration: ACI with γ = 0, γ = 0.01 and γ = 0.05.
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Theory

For any distribution:∣∣∣∣ 1
T1

T0+T1∑
t=T0+1

1
{
yt ∈ Ĉαt(xt)

}
︸ ︷︷ ︸

Average coverage

−(1− α)
∣∣∣∣ ≤ 2

γT1

1 Impact of the learning rate γ

Exchangeable case

Theorem 1 (informal)

Assume exchangeable scores and perfect calibration. As γ → 0:
Average length of intervals from ACI using γ

= Average length of intervals from Split Conformal Prediction
+ γ × C(α, distribution of the data)︸ ︷︷ ︸

>0 in general
.

Auto-regressive case: εt+1 = ϕεt + ξt+1.

Theorem 2 (informal)

Assume auto-regressive residuals and perfect calibration. There ex-
ists an optimal γ∗ > 0 minimizing the average length for high ϕ.
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Conclusion: choosing γ is crucial but difficult.

2 AgACI

•Experts (ACI with
many γ) aggregation
(Cesa-Bianchi and
Lugosi, 2006).
•One algorithm for the
upper bound, another
for the lower bound.
•Based on the pinball
loss of level 1− α

2 , or of
level α2 .

Experts
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3 Numerical results

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

with Xt,· ∼ U([0, 1]) and εt an ARMA(1,1) process:
εt+1 = ϕεt + ξt+1 + θξt,

with ξt is a white noise of variance σ2.
•ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
•σ is fixed to keep the variance Var(εt) constant to 10.
•Random forest are used as regressor.
•For each setting (pair variance and ϕ,θ):
◦300 points, the last 100 kept for prediction and evaluation,
◦500 repetitions,
⇒ in total, 100× 500 = 50000 predictions are evaluated.
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• Increasing the temporal dependence impacts benchmarks validity.
•ACI is robust and maintains validity for some well-chosen γ.
•AgACI is robust and maintains validity without choosing γ.

Open directions

Theory on AgACI: is it asymptotically valid? Efficient?
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