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Context

In many areas such as healthcare or en-
ergy, the lack of uncertainty quantifi-
cation of predictive models is a major
barrier to the adoption of powerful ma-
chine learning methods. The emergent
field of conformal prediction (CP, Vovk
et al., 2005) is a promising framework
for distribution-free uncertainty quan-
tification. It is a general procedure to
build predictive intervals for any (black
box) predictive model, which are valid
(i.e. achieve nominal marginal coverage),
in finite sample, and without any dis-
tributional assumptions except that the
data are exchangeable. The goal is to
build a predictive interval Cα such that:
P {Yn+1 ∈ Cα (Xn+1)} ≥ 1− α.

To achieve this, Split CP (SCP, Pa-
padopoulos et al., 2002) first splits the
n points of the training set in two sets
Tr,Cal ⊂ [1,n] to create a proper train-
ing set, Tr, and a calibration set, Cal.
On the proper training set a regression
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model µ̂ (chosen by the user) is fitted,
and then used to predict on the calibra-
tion set. A conformity score is applied
to assess the conformity between the cal-
ibration’s response values and the pre-
dicted values, giving SCal = {(si)i∈Cal}.
In regression, usually the absolute value
of the residuals is used, i.e. |µ̂(xi)− yi|.
Finally, a corrected (1 − α̂)-th quantile

of these scores Q̂1−α̂(SCal) is computed
to define the size of the interval. In its
simplest form, it is centered on the pre-
dicted value: Cα (xn+1) = Ĉα̂(xn+1) :=

[µ̂(xn+1)± Q̂1−α̂(SCal)].
Given the non-exchangeability of time

series data, SCP can not be applied as
such to forecasting tasks. To achieve this,
we study and extend Adaptive Confor-
mal Inference (ACI, Gibbs and Candès,
2021) in the context of time series with
general dependency. ACI is a method
designed to handle an online setting with
distributional shift. ACI relies on using
an adaptive miscoverage rate αt, that
is updated according to previous perfor-
mances and to a learning rate γ ≥ 0.
Concretely, at each time step t where a
prediction is given, α̂ := αt and αt+1 =
αt+γ(α−1{yt /∈ Ĉαt(xt)}): if ACI does
not cover at time t, then αt+1 ≤ αt, thus

Q̂1−αt+1
≥ Q̂1−αt

, and the size of the
predictive interval increases; conversely
when it covers. Unlike SCP, ACI is
asymptotically valid, regardless of the
data distribution.



1 Theory

First, we study theoretically, using
Markov Chain theory, the impact of γ
on the length of the predictive intervals,
in order to describe not only the validity
but also the efficiency of ACI. Moreover,
ACI is usually applied without know-
ing the type of data it will encounter.
If the scores are actually exchangeable,
ACI’s validity would not improve upon
SCP (known to be valid), thus assessing
ACI’s impact on efficiency is necessary.
Thereby, we first provide an analysis in
the exchangeable case, then in the auto-
regressive one (time series).

Theorem 1 (informal). If the scores are
exchangeable and the calibration is per-
fect, then the average length of ACI’s
intervals worsen linearly with γ with re-
spect to classical SCP.

Theorem 2 (informal). If the residuals
are auto-regressive of coefficient ϕ (the
higher the more important the temporal
dependence) and the calibration is per-
fect, then there exists an optimal γ∗ > 0
minimizing the average length for high ϕ.

These results stress that choosing γ is
crucial but difficult.

2 Algorithm

Second, we design AgACI, a parameter-
free method using online expert aggre-
gation (Cesa-Bianchi and Lugosi, 2006).
Based on the pinball loss of level 1− α

2
(resp. α

2 ), AgACI assigns weights to each
expert (an expert is a version of ACI
with some γ) depending on their previ-
ous performances in order to output a
unique upper bound (resp. lower bound)
which is the weighted mean of the experts
upper (resp. lower) bounds.

3 Numerical experiments

Third, we compare ACI with various γ,
AgACI and benchmark methods, on ex-
tensive synthetic experiments of increas-
ing temporal dependence and on the task
on forecasting French electricity prices.

These experiments highlight that:

• Benchmark methods are not robust to
the increase of the temporal depen-
dence;

• ACI is robust to this increase, main-
taining validity in all settings with a
well-chosen γ;

• AgACI is robust to this increase with-
out choosing γ, at the cost of not being
the smallest.
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