Conformal Prediction with Missing Values

Margaux Zaffran^[1,2,3] Aymeric Dieuleveut^[3] Julie Josse^[2] Yaniv Romano^[4]

 $^{[1]}$ Electricité De France, Paris, France $^{[2]}$ INRIA, Montpellier, France $^{[3]}$ Ecole Polytechnique, Paris, France $^{[4]}$ Technion - Israel Institute of Technology, Haifa, Israel

Motivations and setting

Objectives

♦ Characterize the **impact of missing values** on **uncertainty** of the outcome. Propose a methodology outputting predictive intervals with conditional coverage guarantees with respect to each pattern of missing values.

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables.
- Missing pattern (mask) $M \in \{0, 1\}^d$: there are 2^d patterns.

 $X = (1, NA, 2) \Rightarrow M = (0, 1, 0) \text{ and } X_{obs(M)} = (1, 2).$

• One possible missing mechanism: Missing Completely At Random (MCAR)

for all $m \in \{0, 1\}^d$, $\mathbb{P}(M = m | X) = \mathbb{P}(M = m)$, i.e. $M \perp X$.

- <u>Framework:</u> learn Y given $X_{obs(M)}$ and M.
- Most popular strategies to deal with missing values: **imputation**. ϕ denotes an imputation function (e.g. replaces NA by a constant, the empirical mean, etc).

Exchangeability after imputation

Let $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$ be exchangeable. Then, for any missing mechanism, for almost all imputation function ϕ : $\left(\phi\left(X_{\text{obs}(M^{(k)})}^{(k)}, M^{(k)}\right), M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ is **exchangeable**.

Infinite data

Consider Impute-then-Regress procedures, e.g. $g \circ \phi$. Define $g_{\delta,\phi}^* \in \underset{g:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\delta}\left(Y - g \circ \phi(X_{\operatorname{obs}(M)}, M)\right)\right]$, where ρ_{δ} is the **pinball loss** associated to the quantile of level δ .

Theorem For almost all functions $\phi \in \mathcal{F}_{\infty}^{I}$, $g_{\delta,\phi}^{*} \circ \phi$ is Bayes optimal for the pinball-risk of level δ .

A universally consistent learner trained on deterministically imputed data set will be Bayes optimal.

 \Rightarrow it will reach conditional coverage with respect to the missing data pattern.

Finite sample: Conformalized Quantile Regression (CQR, Romano et al., 2019)

Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.

• Given any quantile regression functions \hat{q}_{inf} and \hat{q}_{sup} • For any (**finite**) sample size n• If the $(X^{(k)}, Y^{(k)})$ are **exchangeable**

 \Rightarrow CQR is **marginally valid** on imputed data sets.

How conditional coverage fails

 $\mathbb{P}\left(Y \in \hat{C}_{\alpha}\left(X\right)\right) \ge 1 - \alpha$

- M is MCAR, of probability 0.2.
- X is imputed by iterative regression.
- CQR based on neural network: \circ on the imputed data set;
 - on the imputed data set concatenated with the mask.
 - Marginal validity is achieved. • Not valid conditionally to the missing data pattern.
 - Adding the mask improves conditionality.

CQR-MDA-Exact: recovering mask-conditional-coverage

* Idea: generate **additional missing values** in the calibration set.

		Test p	point									
	3	NA	NA	1						Theorem		
	Init	ial cali	bratior	n set		Calibration set used			ised	Assume:		
$x^{(1)}$	-1	-10	6	1	$ ightarrow ilde{x}^{(1)}$	-1	NA	NA	1	• exchangeable data,		
$x^{(2)}$	4	NA	-2	2	$\tilde{x}^{(2)}$	4	NA	NA	2	• MCAR mechanism.		
$x^{(3)}$	5	1	1	NA	$ig] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					Then, CQR-MDA-Exact's predictive intervals satisfy for any $m \in \{0, 1\}^{d}$.		
$x^{(4)}$	0	NA	NA	1	$\int ilde{x}^{(4)}$	0	NA	NA	1	$\mathbb{P}(Y \in \hat{C}_{\alpha}(X, M) M = m) \ge 1 - \alpha.$		
$e^{(k)} = \max\left\{\hat{q}_{\inf}\left(\tilde{x}^{(k)}\right) - y^{(k)}, y^{(k)} - \hat{q}_{\sup}\left(\tilde{x}^{(k)}\right)\right\}$												
$\star \underline{Sa}$	\star Sanity check: Gaussian linear data with $d = 10$.											

Insights from the Gaussian linear model

• $Y = \beta^T X + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \perp X$, and $\beta \in \mathbb{R}^d$. • X conditional on M is Gaussian: for all $m \in \{0,1\}^d$, there exist μ_m and Σ_m such that $X|(M=m) \sim \mathcal{N}(\mu_m, \Sigma_m).$

Particular case: $X \sim \mathcal{N}(\mu, \Sigma)$, and M is MCAR. Then, $\mu_m \equiv \mu$ and $\Sigma_m \equiv \Sigma$.

Oracle intervals

Under the Gaussian linear model, for any $m \in \{0,1\}^d$, the oracle length is given by: $\mathcal{L}^*_{\alpha}(\boldsymbol{m}) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\min(\boldsymbol{m})} \Sigma_{\min(\boldsymbol{m})|obs(\boldsymbol{m})} \beta_{\min(\boldsymbol{m})}^T} + \sigma_{\varepsilon}^2,$ with $\Sigma_{\min(m)|obs(m)} = \Sigma_{\min(m),\min(m)} - \Sigma_{\min(m),obs(m)} \Sigma_{obs(m),obs(m)}^{-1} \Sigma_{obs(m),\min(m)}$.

• The oracle intervals depend on the regression coefficients. • Additional heteroskedasticity is generated by the missing values. • The oracle intervals depend on the mask in a non-linear fashion. \hookrightarrow even under MCAR data, it is useful to add the mask as feature.

TraumaBase®: critical care medicine

- Predict the levels of blood platelets upon arrival at the hospital;
- 7 explanatory variables selected by medical doctors;
- Missing values vary from 0% to 24% by features, with a total average of 7%.

Poster —

Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021). What's a good imputation to predict with missing values? NeurIPS. Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. NeurIPS.