# Uncertainty quantification in presence of missing values

Margaux Zaffran $^{[1,2,3]}$  Aymeric Dieuleveut $^{[3]}$  Julie Josse $^{[2]}$  Yaniv Romano $^{[4]}$ 

[1] Electricité De France, Paris, France [2] INRIA, Montpellier, France [3] Ecole Polytechnique, Paris, France [4] Technion - Israel Institute of Technology, Haifa, Israel









### Motivations and setting

### Objectives

♦ Characterize the **impact of missing values** on **uncertainty** of the outcome.

- Propose a methodology outputting predictive intervals with conditional coverage guarantees with respect to each pattern of missing values.
- $\bullet(X,Y) \in \mathbb{R}^d \times \mathbb{R}$  random variables.
- Missing pattern (mask)  $M \in \{0,1\}^d$ : there are  $2^d$  patterns.

$$X = (1, NA, 2) \Rightarrow M = (0, 1, 0) \text{ and } X_{obs(M)} = (1, 2).$$

# • Missing mechanism: Missing Completely At Random (MCAR) for all $m \in \{0,1\}^d$ , $\mathbb{P}(M=m|X) = \mathbb{P}(M=m)$ , i.e. $M \perp \!\!\! \perp X$ .

- Framework: learn Y given  $X_{obs(M)}$  and M.
- Most popular strategies to deal with missing values: **imputation**.  $\phi$  denotes an imputation function (e.g. replaces NA by a constant, the empirical mean, etc).

### Exchangeability after imputation

Let  $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$  be i.i.d.. Then, for any missing mechanism, for almost all imputation function  $\phi$ :  $\left(\phi\left(X_{\text{obs}(M^{(k)})}^{(k)}, M^{(k)}\right), M^{(k)}, Y^{(k)}\right)_{k=1}^n$  is **exchangeable**.

### Infinite data

Consider **Impute-then-Regress** procedures, e.g.  $g \circ \phi$ . Define  $g_{\delta,\phi}^* \in \underset{g:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_\delta\left(Y - g \circ \phi(X_{\operatorname{obs}(M)}, M)\right)\right]$ , where  $\rho_\delta$  is the **pinball loss** associated to the quantile of level  $\delta$ .

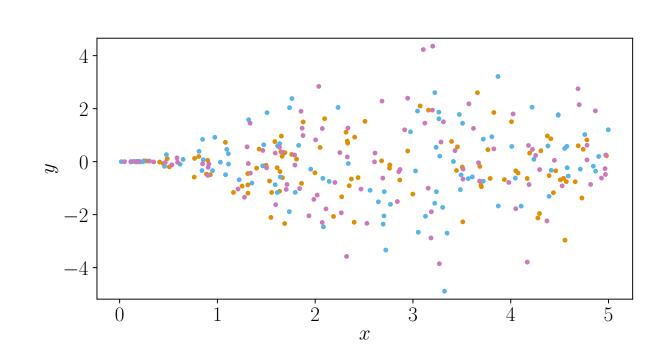
### Theorem

For almost all functions  $\phi \in \mathcal{F}_{\infty}^{I}$ ,  $g_{\delta,\phi}^{*} \circ \phi$  is Bayes optimal for the pinball-risk of level  $\delta$ .

A universally consistent learner trained on deterministically imputed data set will be Bayes optimal.

 $\Rightarrow$  it will reach conditional coverage with respect to the missing data pattern.

## Finite sample: Conformalized Quantile Regression (CQR, Romano et al., 2019)



Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.

- ullet Given any quantile regression functions  $\hat{q}_{\mathrm{inf}}$  and  $\hat{q}_{\mathrm{sup}}$
- For any (**finite**) sample size n
- If the  $(X^{(k)}, Y^{(k)})$  are **exchangeable**

$$\mathbb{P}\left(Y \in \hat{C}_{\hat{\alpha}}(X)\right) \ge 1 - \alpha$$

⇒ CQR is **marginally valid** on imputed data sets.

### How conditional coverage fails

Insights from the Gaussian linear model

• X conditional on M is Gaussian: for all  $m \in \{0,1\}^d$ , there exist  $\mu_m$  and  $\Sigma_m$  such that

**Particular case:**  $X \sim \mathcal{N}(\mu, \Sigma)$ , and M is MCAR. Then,  $\mu_m \equiv \mu$  and  $\Sigma_m \equiv \Sigma$ .

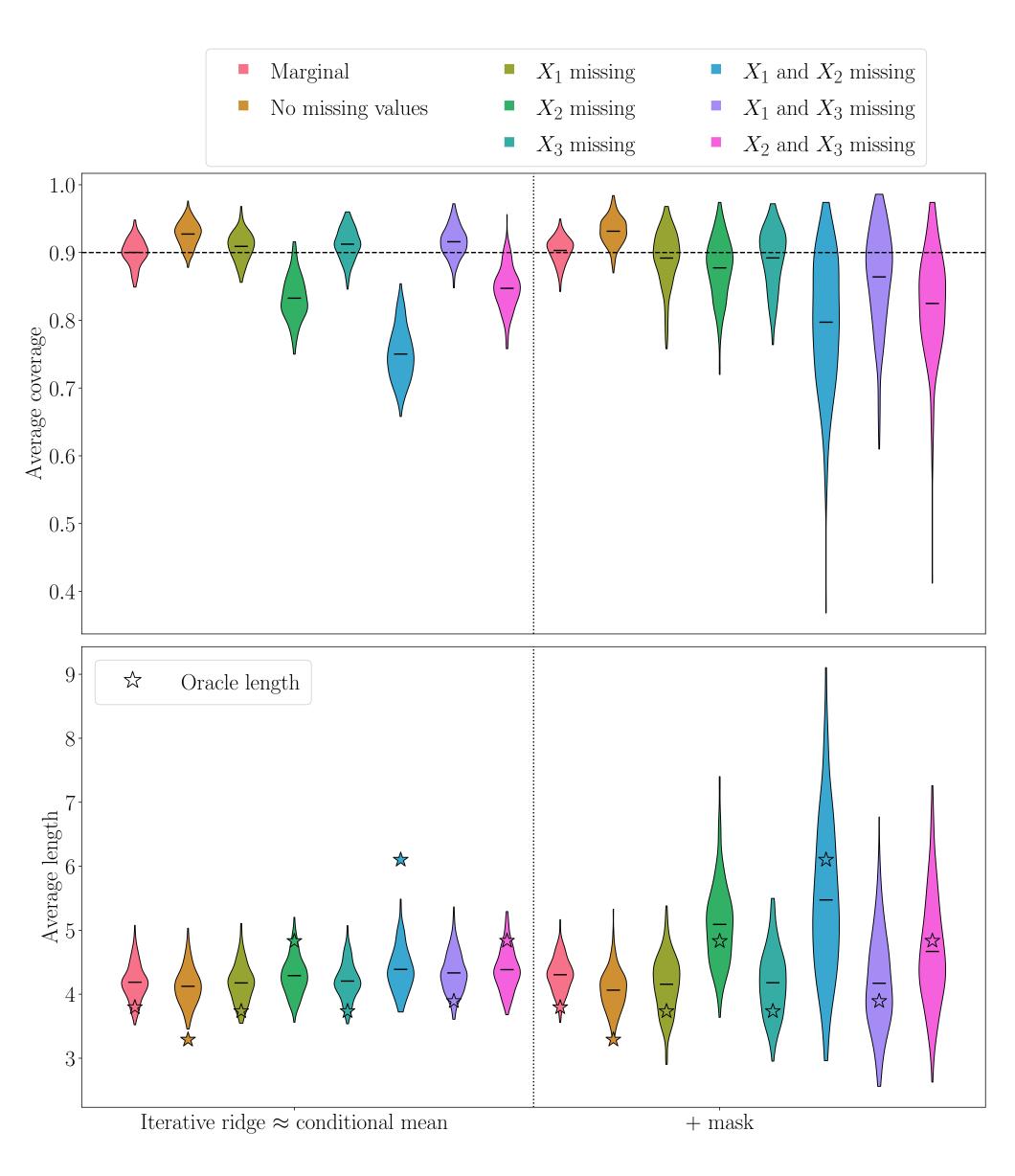
with  $\Sigma_{\min(m)|\text{obs}(m)} = \Sigma_{\min(m),\min(m)} - \Sigma_{\min(m),\text{obs}(m)} \Sigma_{\text{obs}(m),\text{obs}(m)}^{-1} \Sigma_{\text{obs}(m),\min(m)}$ .

 $X|(M=m) \sim \mathcal{N}(\mu_m, \Sigma_m).$ 

Oracle intervals

 $\mathcal{L}_{\alpha}^{*}(m) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\min(m)} \Sigma_{\min(m)|obs(m)} \beta_{\min(m)}^{T} + \sigma_{\varepsilon}^{2}},$ 

Under the Gaussian linear model, for any  $m \in \{0,1\}^d$ , the oracle length is given by:



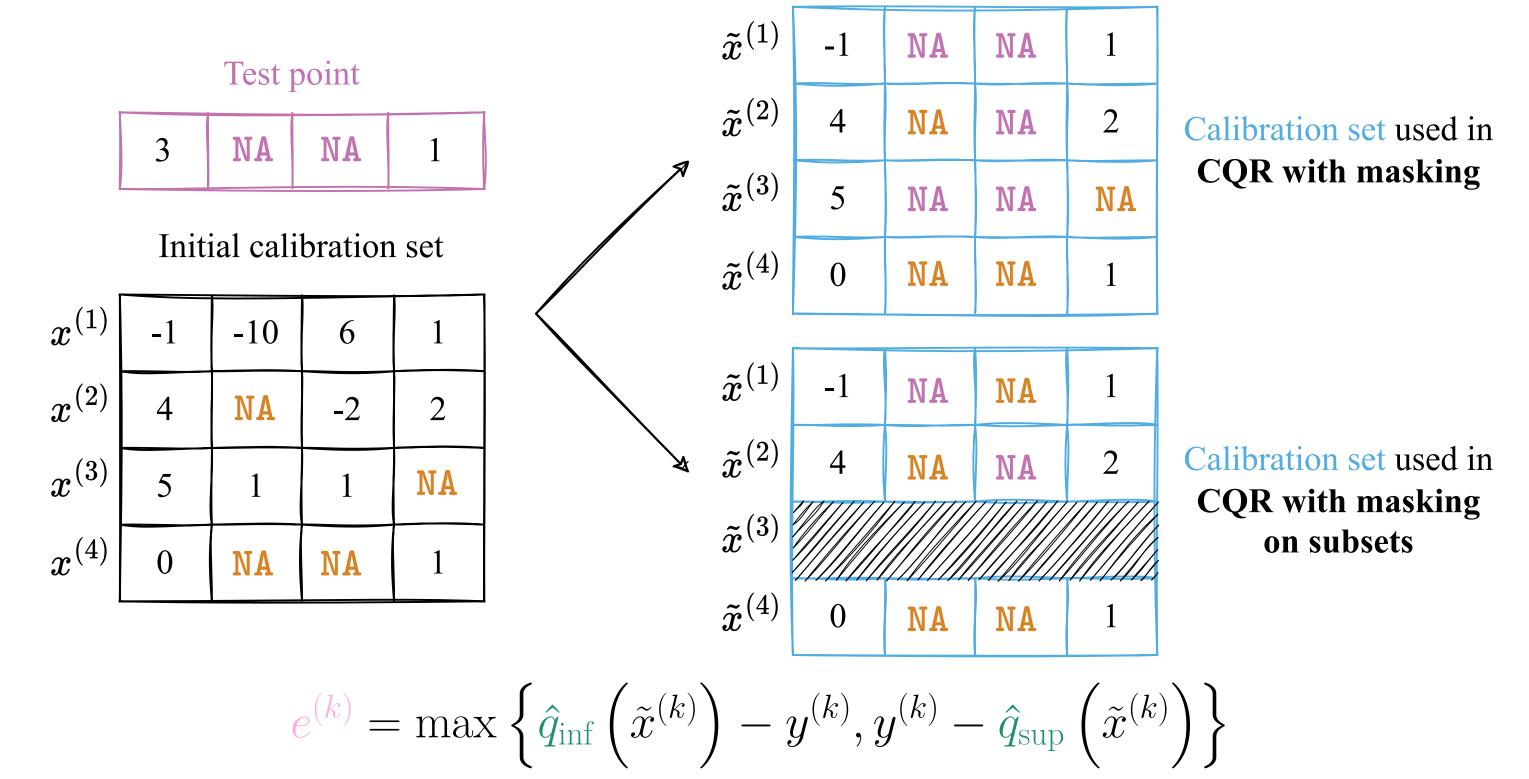
•  $Y = \beta^T X + \varepsilon$ , with  $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \perp X$ , and  $\beta \in \mathbb{R}^d$ .

- $\bullet Y = \beta^T X + \varepsilon$   $\circ X \sim \mathcal{N} \left( \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 & 0.8 \\ 0.8 & 1 & 0.8 \\ 0.8 & 0.8 & 1 \end{pmatrix} \right)$   $\circ \beta = (1, 2, -1)^T \quad \circ \varepsilon \sim \mathcal{N}(0, 1)$
- M is MCAR, of probability 0.2.
- $\bullet X$  is imputed by iterative regression.
- CQR based on neural network:
  on the imputed data set;
  on the imputed data set concatenated with the mask.
  - Marginal validity is achieved.
  - Not valid conditionally to the missing data pattern.
- Adding the mask improves conditionality.

# Step 1 Learn $\hat{q}_{inf}$ and $\hat{q}_{sup}$ Predict with $\hat{q}_{inf}$ and $\hat{q}_{sup}$ Get the scores $e^{(k)}$ Compute the $(1 - \alpha) \times (1 + \frac{1}{\#\text{Cal}})$ empirical quantile of the $e^{(k)}$ , noted $Q_{1-\hat{\alpha}}(e)$ $e^{(k)} := \max \left\{ \hat{q}_{inf} \left( x^{(k)} \right) - y^{(k)}, y^{(k)} - \hat{q}_{sup} \left( x^{(k)} \right) \right\}$ Predict with $\hat{q}_{inf}$ and $\hat{q}_{sup}$ Predict with $\hat{q}_{inf}$ and $\hat{q}_{sup}$

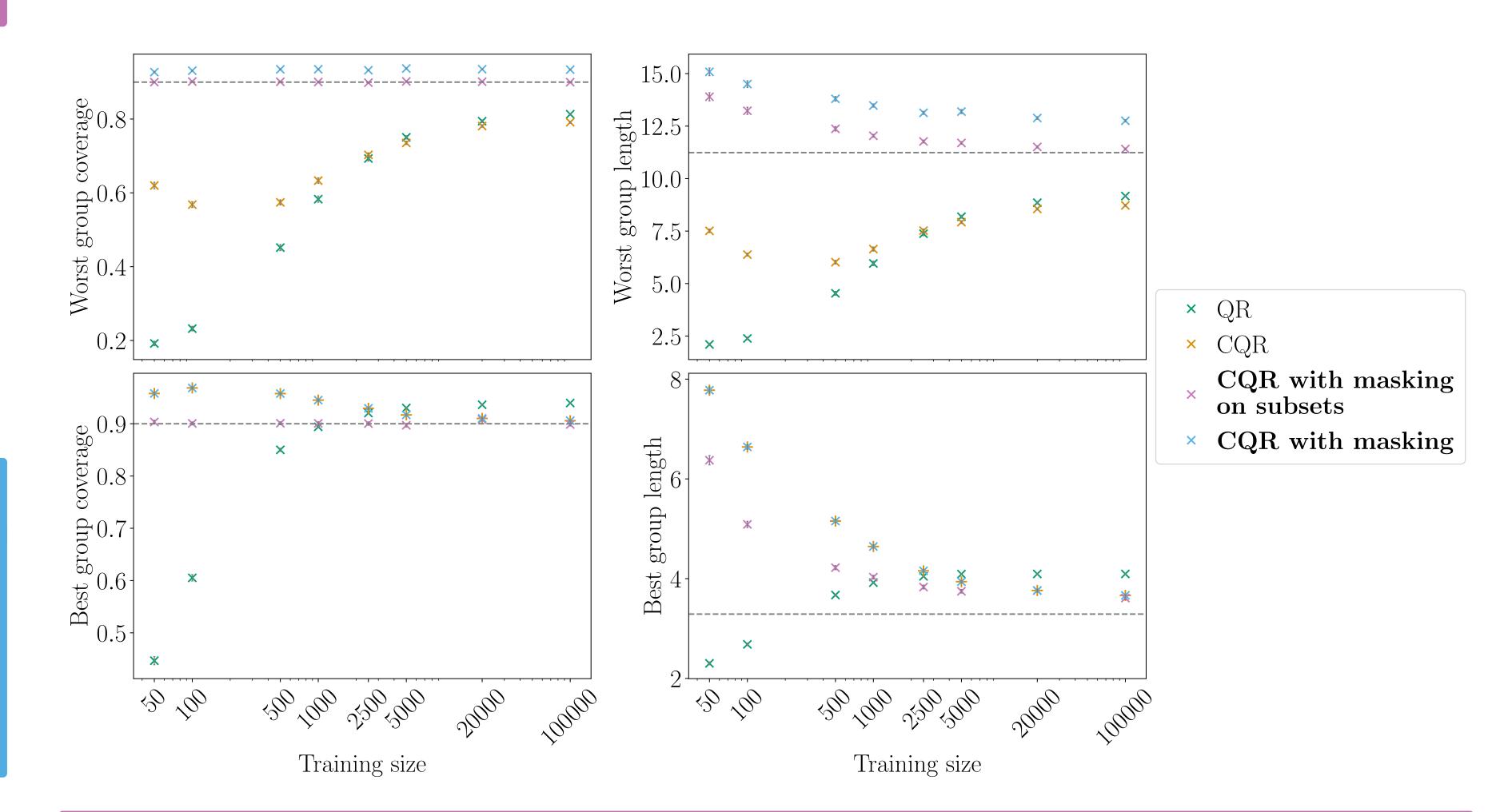
# Proposed algorithms

<u>Idea:</u> generate **additional missing values** in the calibration set.



### Appropriate coverage conditionally to the missing patterns

On Gaussian linear data with d = 10, focus on **2 extreme missing patterns**: largest and smallest number of missing values.



• The oracle intervals depend on the regression coefficients.

- Additional heteroskedasticity is generated by the missing values.
- The oracle intervals depend on the mask in a non-linear fashion.

  → even under MCAR data, it is useful to add the mask as feature.
- As the training size increases, **QR** and **CQR** improve conditional coverage.
- CQR with masking on subsets is not over-conservative on the easiest group, but requires more calibration data than CQR with masking.
- $\bullet$  As the training size increases, **CQR** with masking on subsets  $\longrightarrow$  oracle length.

Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021). What's a good imputation to predict with missing values? *NeurIPS*. Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *NeurIPS*.