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Forecasting French electricity Spot prices



Electricity Spot prices

Figure 1: Drawing of spot auctions mechanism
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French Electricity Spot prices data set: visualisation
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Figure 2: Representation of the French electricity spot price, from 2016

to 2019.
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French Electricity Spot prices data set: extract

Date and time Price Price D-1 Price D-7 For. cons. DOW

11/01/16 0PM 21.95 15.58 13.78 58800 Monday

11/01/16 1PM 20.04 19.05 13.44 57600 Monday
...

...
...

...
...

...

12/01/16 0PM 21.51 21.95 25.03 61600 Tuesday

12/01/16 1PM 19.81 20.04 24.42 59800 Tuesday
...

...
...

...
...

...

18/01/16 0PM 38.14 37.86 21.95 70400 Monday

18/01/16 1PM 35.66 34.60 20.04 69500 Monday
...

...
...

...
...

...

Table 1: Extract of the built data set, for French electricity spot price

forecasting.
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Forecasting French electricity Spot prices
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Figure 3: French electricity spot price and its prediction with random

forest.

↪→ (xt , yt) ∈ Rd ×R (d = 56, details later)

↪→ 3 years for training

↪→ 1 year to forecast
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Forecasting French electricity Spot prices with confidence
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Figure 4: French electricity spot price, its prediction and its uncertainty

with AgACI (proposed algorithm).

• Target coverage: 90%

• Empirical coverage: 91.68%
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Conformal prediction and time series,

what’s the issue?



Framework and notations

• Data: T0 observations (x1, y1), . . . , (xT0 , yT0) in R
d ×R

• Aim: predict the response values as well as predictive intervals

for T1 subsequent observations xT0+1, . . . , xT0+T1

↪→ Build the smallest interval Ct
α such that:

P
{
Yt ∈ Ct

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K.
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Split Conformal Prediction

Split conformal prediction is simple to compute and works:

• any regression algorithm (neural nets, random forest...);

• distribution-free as long as the data is exchangeable;

↪→ the scores need to be exchangeable (but then it would not

work with any regression algorithm)

• finite sample.
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Time series are not exchangeable

Figure 5: Trend1 Figure 6: Seasonality2

Figure 7: Shift Figure 8: Time dependence

1Images from Yannig Goude class material. 8 / 26



Non-exchangeable even if the noise is exchangeable

Assume the following model:

Yt = ft(Xt) + εt , for t ∈ N∗,

for some function ft , and some noise εt .

Even if the noise εt is exchangeable, we can produce dependent

residuals.

Figure 9: Auto-Regressive residuals
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Available methods for non-exchangeable

data, in the context of time series



How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and
re-calibrate)

↪→ update to recent observations (trend impact, period of the

seasonality, dependence...)

• Use a sequential split

↪→ use only the past so as to correctly estimate the variance of

the residuals (using the future leads to optimistic residuals and

underestimation of their variance)
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Online sequential split conformal prediction (OSSCP)

t = T0 + T1 t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Figure 10: Diagram describing the online sequential split conformal

prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

↪→ tested on real time series
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EnbPI, Xu and Xie (2021)

t = 0 t = T0 t = T0 + T1 

Test pointTraining set Calibration set

Figure 11: Diagram describing the EnbPI algorithm.

↪→ tested on other real time series

↪→ compared to offline methods
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Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient ⇒ adapt the quantile level

used on the calibration’s scores.

(Distribution shift)

The proposed update scheme is the following:

αt+1 := αt + γ (α− errt) (1)

with:

errt :=

{
1 if yt /∈ Ĉαt (xt) ,

0 otherwise ,

and α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so

we want to increase its length by taking a higher quantile (a

smaller αt). Reversely if we included the point.

Gibbs and Candès (2021) provide asymptotic validity result for any

distribution.
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Visualisation of the procedure
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Figure 12: Visualisation of ACI with different values of γ (γ = 0,

γ = 0.01, γ = 0.05)
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Theoretical analysis of ACI’s length



Approach

Aim: derive theoretical results on the average length of ACI

depending on γ

↪→ Guideline for choosing γ

Approach: consider extreme cases (useful in an adversarial context)

with simple theoretical distributions (additional assumptions)

1. exchangeable

2. Auto-Regressive case (AR(1))
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Theoretical analysis of ACI’s length: exchangeable case

Define L(αt) = 2Q(1− αt) the length of the interval predicted by

the adaptive algorithm at time t, and L0 = 2Q(1− α) the length

of the interval predicted by the non-adaptive algorithm (γ = 0).

Theorem

Assume the scores are exchangeable with quantile function Q

perfectly estimated at each time, and other assumptions.

Then, for all γ > 0, (αt)t>0 forms a Markov Chain, that admits a

stationary distribution πγ , and

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ [L]

not.
= Eα̃∼πγ [L(α̃)].

Moreover, as γ → 0,

Eπγ [L] = L0 + Q ′′(1− α)
γ

2
α(1− α) + O(γ3/2).
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Numerical analysis of ACI’s length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: ε̂t+1 = φε̂t + ξt+1

with (ξt)t i.i.d. random variables and other assumptions, we

have:

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ,φ [L].
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Figure 13: γ∗ minimizing the average length for each φ.
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AgACI



AgACI: adaptive wrapper around ACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,

2006) computes an optimal weighted mean of experts. The

weights assigned to each expert depend on all experts

losses/performances at previous time steps.

AgACI performs 2 independent aggregations: one for each bound

(the upper and lower ones).

The experts are K versions of ACI with a different γ in {(γk)k≤K}.

b̃
(u)
t+1(x) =

∑K
k=1 ω

(u)
t,k b̂

(u)
t,k (x)∑K

l=1 ω
(u)
t,l

The pinball loss (usual in quantile regression) is used to assess the

performances of each expert.

The pinball loss of level 1− α/2 for

the upper bound, and of level α/2 for the lower bound.
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Comparison on simulated data



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = φεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• φ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and φ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.
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Summary

1. The temporal dependence impacts the validity.

2. Online is significantly better than offline.

3. OSSCP. Achieves valid coverage for φ and θ smaller than

0.9, but is not robust to the increasing dependence.

4. EnbPI. Its validity strongly depends on the data distribution.

When the method is valid, it produces the smallest intervals.

EnbPI V2 method should be preferred.

5. ACI. Achieves valid coverage for every simulation settings

with a well chosen γ, or for dependence such that φ < 0.95.

It is robust to the strength of the dependence.

6. AgACI. Achieves valid coverage for every simulation settings,

with good efficiency.
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Price prediction with confidence in 2019



Settings

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions

afterwards.

↪→ 24 models

◦ yt ∈ R
◦ xt ∈ Rd , with d = 24 + 24 + 1 + 7 = 56

◦ 3 years for training/calibration, i.e. T0 = 1096 observations

◦ 1 year to forecast, i.e. T1 = 365 observations

24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week
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Performance on predicted French electricity Spot price for the

year 2019
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Performance on predicted French electricity Spot price:

visualisation of a day
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Figure 14: French electricity spot price, its prediction and its uncertainty

with AgACI.
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Concluding remarks



Contributions and messages

• Pipeline of analysis for simulation of increasing difficulty and

real data analysis (code in python) for reproducible work and

benchmarking conformal predictions in the framework of time

series: GitHub

• Theoretical results on ACI’s length depending on γ

• ACI useful for general time series

• Empirical proposition of an adaptive choice of γ: AgACI

↪→ Perspective: refined analysis of AgACI and expert
aggregation

◦ Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

◦ Analysis of the obtained efficiency

◦ More data sets
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Thank you!
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Examples of non-exchangeable scores with

exchangeable noise



Endogenous and not perfectly estimated

Assume Xt = Yt−1 ∈ R and that

Yt = aYt−1 + εt ,

where εt is a white noise.

Assume that the fitted model is f̂t(x) = âx , with â ̸= a.

Then, for any t, we have that:

ε̂t = Yt − Ŷt = (a− â)Yt−1 + εt

ε̂t = aε̂t−1 + ξt

with ξt = εt − âεt−1.

ε̂t is an ARMA process of parameters φ = a and θ = −â.

Thus, we have generated dependent residuals (ARMA residuals)

even if the underlying model only had white noise.
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Exogenous and misspecified

Assume Xt ∈ R2 and that:
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Analysis of ACI’s efficiency depending on γ



Numerical analysis of ACI’s length: AR(1) case

Assume the residuals follow an AR(1) process: ε̂t+1 = φε̂t + ξt+1

with (ξt)t i.i.d. random variables and other assumptions, we have:
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Figure 15: Left: evolution of the mean length depending on γ for

various φ. Right: γ∗ minimizing the average length for each φ.



EnbPI



EnbPI, Xu and Xie (2021)
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Figure 16: Diagram describing the EnbPI algorithm.

EnbPI (ICML, Xu and Xie, 2021) aggregates with 2 different

functions.

⇒ We propose EnbPI V2 with the same aggregation function all

along (similar to EnbPI on last ArXiV version from Xu and Xie).
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↪→ tested on other real time series

↪→ compared to offline methods

EnbPI (ICML, Xu and Xie, 2021) aggregates with 2 different

functions.

⇒ We propose EnbPI V2 with the same aggregation function all

along (similar to EnbPI on last ArXiV version from Xu and Xie).



Details on the simulation set up



Data generation

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt are multivariate uniformly distributed on [0, 1] and εt

are generated from an ARMA(1,1) process.

⇒ dependence structure in the noise in order to:

• control the strength of the scores dependence,

• evaluate the impact of this temporal dependence structure of

the results.
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Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that εt is an ARMA(1,1) process if for any t:

εt+1 = φεt + ξt+1 + θξt ,

with:

• θ + φ ̸= 0, |φ| < 1 and |θ| < 1;

• ξt is a white noise of variance σ2, called the innovation.

• The higher φ and θ, the stronger the dependence.

• The asymptotic variance of this process is:

Var(εt) = σ2 1− 2φθ + θ2

1− φ2
.

• If θ = 0, only the auto-regressive part, it is an AR(1).

• If φ = 0, only the moving-average part, it is an MA(1).
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Simulation settings

• φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ so as to keep the variance Var(εt) constant to 1 or

10.

• We use random forest as regressor.

For each setting:

• 300 points, the last 100 kept for prediction and evaluation,

• 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

We present the results in the ARMA(1,1) case, but we also have

them for AR(1) and MA(1) processes.
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Additional results on the synthetic data sets



Empirical evaluation of ACI sensitivity to γ and adaptive choice
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⇒ The more the dependence, the more sensitive to γ is ACI.



Empirical evaluation of ACI sensitivity to γ and adaptive choice

Coverage

12

13

14

15

16
A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.1

Coverage

A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.8

0.86 0.88 0.90
Coverage

12

13

14

15

16

A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.95

0.86 0.88 0.90
Coverage

A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.99

0.0000

0.0001

0.0004

0.0007

0.0010

0.0040

0.0070

0.0100

0.0400

0.0700

γ

AgACI

Naive method

⇒ The more the dependence, the more sensitive to γ is ACI.



Empirical evaluation of ACI sensitivity to γ and adaptive choice

Coverage

12

13

14

15

16
A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.1

Coverage

A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.8

0.86 0.88 0.90
Coverage

12

13

14

15

16

A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.95

0.86 0.88 0.90
Coverage

A
ve
ra
ge

le
n
gt
h
,
af
te
r
im

p
u
ta
ti
on

ϕ = θ =0.99

0.0000

0.0001

0.0004

0.0007

0.0010

0.0040

0.0070

0.0100

0.0400

0.0700

γ

AgACI

Naive method

Naive method (▽): smallest among valid ones in the past
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Empirical evaluation of ACI sensitivity to γ and adaptive choice,

AR(1)
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Empirical evaluation of ACI sensitivity to γ and adaptive choice,

MA(1)
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Results: impact of the temporal dependence, ARMA(1), vari-

ance 10, average length after imputation
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Results: impact of the temporal dependence, AR(1) and

MA(1), variance 10
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Results: impact of the temporal dependence, AR(1) and

MA(1), variance 10, average length after imputation
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Additional results on the French electricity

spot prices



Forecasting French electricity Spot prices with confidence: re-

sults

• Target coverage: 90%

• Empirical coverage: 91.68%

• Median length: 22.76e/MWh



Performance on predicted French electricity Spot price:

visualisation of a day
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Figure 17: OSSCP
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Figure 18: EnbPI V2
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Figure 19: ACI with γ = 0.01
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Figure 20: ACI with γ = 0.05
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