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Introduction to Split Conformal Prediction



Setting

• (x , y) ∈ Rd ×R realization of random variable (X ,Y )

• n training samples (xi , yi )
n
i=1

• Goal: predict an unseen point yn+1 at xn+1 with confidence

• Miscoverage level α ∈ [0, 1]

I Build a predictive interval Cα such that:

P {Yn+1 ∈ Cα (Xn+1)} ≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative.
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Split conformal prediction: toy example
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Split conformal prediction: training step

0 2 4
x

−2

0

2

y

I Learn µ̂

3 / 21



Split conformal prediction: calibration step
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I Predict with µ̂

I Get the residuals ε̂i

I Compute the

(1− α) empirical

quantile of the |ε̂i |,
noted Q1−α (|ε̂i |)
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Split conformal prediction: prediction step
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[µ̂(x)±Q1−α (|ε̂i |)]
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Exchangeability

Definition (Exchangeability)

(Zi )
n
i=1 are exchangeable if for any permutation σ of [1, n] we

have:

L (Z1, . . . ,Zn) = L
(
Zσ(1), . . . ,Zσ(n)

)
,

where L designates the joint distribution.
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Conformal prediction: theoretical guarantees

This procedure enjoys finite sample guarantee proposed and proved

in Lei et al. (2018).

Theorem
Suppose (Xi ,Yi )

n+1
i=1 are exchangeable, and we apply split

conformal prediction on (Xi ,Yi )
n
i=1 to predict an interval on Xn+1,

Ĉα (Xn+1). Then we have:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores ε̂j have a continuous joint distribution,

we also have an upper bound:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

2

n + 2
.
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Conformal prediction: summary

Split conformal prediction is simple to compute and works:

• any regression algorithm (neural nets, random forest...);

• distribution-free as long as the data is exchangeable;

↪→ the scores need to be exchangeable (but then it would not

work with any regression algorithm)

• finite sample.

Two interests:

• quantify the uncertainty of the underlying model µ̂

• output predictive regions
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Conformal prediction and time series,

what’s the issue?



Framework and notations

• Data: T0 observations (x1, y1), . . . , (xT0 , yT0) in Rd ×R
• Aim: predict the response values as well as predictive intervals

for T1 subsequent observations xT0+1, . . . , xT0+T1

↪→ Build the smallest interval Ctα such that:

P
{
Yt ∈ Ctα (Xt)

}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K.
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Time series are not exchangeable

Figure 1: Trend1
Figure 2: Seasonality2

Figure 3: Shift Figure 4: Time dependence

1Images from Yannig Goude class material. 10 / 21



Non-exchangeable even if the noise is exchangeable

Assume the following model:

Yt = ft(Xt) + εt , for t ∈ N∗,
for some function ft , and some noise εt .

Even if the noise εt is exchangeable, we can produce dependent

residuals.

Figure 5: Auto-Regressive residuals
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Adaptive Conformal Inference



Online sequential split conformal prediction (OSSCP)

t = T0 + T1
t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Figure 6: Diagram describing the online sequential split conformal

prediction.
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Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient ⇒ adapt the quantile level

used on the calibration’s scores.

(Distribution shift)

The proposed update scheme is the following:

αt+1 := αt + γ (α− errt) (2)

with:

errt :=

{
1 if yt /∈ Ĉαt (xt) ,

0 otherwise ,

and α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so

we want to increase its length by taking a higher quantile (a

smaller αt). Reversely if we included the point.

Gibbs and Candès (2021) provide asymptotic validity result for any

distribution.
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Visualisation of the procedure
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Figure 7: Visualisation of ACI with different values of γ (γ = 0,

γ = 0.01, γ = 0.05)
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AgACI



AgACI: adaptive wrapper around ACI, setting

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,

2006) computes an optimal weighted mean of experts. The

weights assigned to each expert depend on all experts

losses/performances at previous time steps.

AgACI performs 2 independent aggregations: one for each bound

(the upper and lower ones).

The experts are K versions of ACI with a different γ in {(γk)k≤K}.
The pinball loss (usual in quantile regression) is used to assess the

performances of each expert.

The pinball loss of level 1− α/2 for

the upper bound, and of level α/2 for the lower bound.
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AgACI: adaptive wrapper around ACI
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Comparison on simulated data



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1])

and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

17 / 21



Visualisation of the results
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Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10
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Concluding remarks



Contributions and messages

• ACI useful for general time series

• Empirical proposition of an adaptive choice of γ: AgACI

↪→ Perspective: refined analysis of AgACI and expert
aggregation

◦ Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

◦ Analysis of the obtained efficiency

◦ More data sets
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Thank you! Questions?
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Available methods for non-exchangeable

data, in the context of time series



How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and
re-calibrate)

↪→ update to recent observations (trend impact, period of the

seasonality, dependence...)

• Use a sequential split

↪→ use only the past so as to correctly estimate the variance of

the residuals (using the future leads to optimistic residuals and

underestimation of their variance)
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Online sequential split conformal prediction (OSSCP)
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Figure 8: Diagram describing the online sequential split conformal

prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

↪→ tested on real time series
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EnbPI, Xu and Xie (2021)

t = 0 t = T0 t = T0 + T1


Test pointTraining set Calibration set

Figure 9: Diagram describing the EnbPI algorithm.

↪→ tested on other real time series

↪→ compared to offline methods
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Theoretical analysis of ACI’s length



Approach

Aim: derive theoretical results on the average length of ACI

depending on γ

↪→ Guideline for choosing γ

Approach: consider extreme cases (useful in an adversarial context)

with simple theoretical distributions (additional assumptions)

1. exchangeable

2. Auto-Regressive case (AR(1))
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Theoretical analysis of ACI’s length: exchangeable case

Define L(αt) = 2Q(1− αt) the length of the interval predicted by

the adaptive algorithm at time t, and L0 = 2Q(1− α) the length

of the interval predicted by the non-adaptive algorithm (γ = 0).

Theorem

Assume the scores are exchangeable with quantile function Q

perfectly estimated at each time, and other assumptions.

Then, for all γ > 0, (αt)t>0 forms a Markov Chain, that admits a

stationary distribution πγ , and

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ [L]

not.
= Eα̃∼πγ [L(α̃)].

Moreover, as γ → 0,

Eπγ [L] = L0 + Q ′′(1− α)
γ

2
α(1− α) + O(γ3/2).
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Theoretical analysis of ACI’s length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: ε̂t+1 = ϕε̂t + ξt+1

with (ξt)t i.i.d. random variables and other assumptions, we

have:

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ,ϕ [L].



Numerical analysis of ACI’s length: AR(1) case

0.00 0.05 0.10 0.15 0.20
γ

2

3

4

A
ve
ra
ge

le
n
gt
h

ϕ =0

ϕ =0.6

ϕ =0.85

ϕ =0.95

ϕ =0.98

ϕ =0.99

ϕ =0.997

ϕ =0.999

0.01 0.03

Thm. 3.1

Figure 10: Average length depending on γ for each ϕ.



Numerical analysis of ACI’s length: AR(1) case, cont’d
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Figure 11: γ∗ minimizing the average length for each ϕ.



Price prediction with confidence in 2019



Electricity Spot prices

Figure 12: Drawing of spot auctions mechanism



French Electricity Spot prices data set: visualisation
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Figure 13: Representation of the French electricity spot price, from 2016

to 2019.



French Electricity Spot prices data set: extract

Date and time Price Price D-1 Price D-7 For. cons. DOW

11/01/16 0PM 21.95 15.58 13.78 58800 Monday

11/01/16 1PM 20.04 19.05 13.44 57600 Monday
...

...
...

...
...

...

12/01/16 0PM 21.51 21.95 25.03 61600 Tuesday

12/01/16 1PM 19.81 20.04 24.42 59800 Tuesday
...

...
...

...
...

...

18/01/16 0PM 38.14 37.86 21.95 70400 Monday

18/01/16 1PM 35.66 34.60 20.04 69500 Monday
...

...
...

...
...

...

Table 1: Extract of the built data set, for French electricity spot price

forecasting.
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Settings

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions

afterwards.

↪→ 24 models

◦ yt ∈ R
◦ xt ∈ Rd , with d = 24 + 24 + 1 + 7 = 56

◦ 3 years for training/calibration, i.e. T0 = 1096 observations
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Performance on predicted French electricity Spot price for the

year 2019
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Performance on predicted French electricity Spot price:

visualisation of a day
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Figure 14: French electricity spot price, its prediction and its uncertainty

with AgACI.



Be careful at conditional guarantees!
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Figure 15: Empirical coverage of AgACI depending on the

day-of-the-week.
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