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Introduction to Split Conformal Prediction



e (x,¥) € RY x R realization of random variable (X, Y)
e n training samples (x;, yi)7_;
e Goal: predict an unseen point y, 1 at x,11 with

e Miscoverage level o € [0, 1]

» Build a predictive interval C,, such that:
P{Yr1 € Co (Xnt1)} 2 , (1)
and C, should be as small as possible, in order to be informative.
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Split conformal prediction: toy example
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Split conformal prediction: training step

>
» Learn [i
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Split conformal prediction: calibration step

» Predict with /i
» Get the residuals

» Compute the
(1 — «) empirical
quantile of the ,
noted Q1_q (&)
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Split conformal prediction: prediction step

~<

» Predict with [

Pag/ » Build C,(x):
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Exchangeability

Definition (Exchangeability)
(Zi);_, are exchangeable if for any permutation o of [1, n] we

have:
L (Zlv ) Zn) =L (Za(l)v 000 g Za(n)) )

where £ designates the joint distribution.
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Conformal prediction: theoretical guarantees

This procedure enjoys finite sample guarantee proposed and proved
in Lei et al. (2018).

Theorem

Suppose (X;, ;)" are exchangeable, and we apply split
conformal prediction on (X, Y,-)f’:1 to predict an interval on X1,
C.. (Xps1). Then we have:

P {Y,,+1 el (X,,+1)} >

If, in addition, the scores &; have a continuous joint distribution,
we also have an upper bound:
4 2
P{Yni1 €€ (Xor1)} <

+n+2'
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Conformal prediction: summary

Split conformal prediction is simple to compute and works:

e any regression algorithm (neural nets, random forest...);

e distribution-free as long as the data is exchangeable;

e finite sample.
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Conformal prediction: summary

Split conformal prediction is simple to compute and works:

e any regression algorithm (neural nets, random forest...);
e distribution-free as long as the data is exchangeable;

< the scores need to be exchangeable (but then it would not
work with any regression algorithm)

e finite sample.
Two interests:

e quantify the uncertainty of the underlying model

e output predictive regions
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Conformal prediction and time series,
what’s the issue?




Framework and notations

e Data: Ty observations (xi,y1), ..., (X7, ¥7,) in RY x R
e Aim: predict the response values as well as predictive intervals
for Ty subsequent observations X741, ..., X7+ T,
< Build the smallest interval C! such that:
P{Y,eCl(X:)} > , forte[To+1, To+ T1].
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series are not exchangeable
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Non-exchangeable even if the noise is exchangeable

Assume the following model:
Yt‘ = ft(Xt) + €4, for t € IN*,

for some function f;, and some noise &;.

Even if the noise ¢; is exchangeable, we can produce dependent

residuals.
1.5
1A .
FL.24 ﬁé iﬁ?
0.5 f * 4
001 3y é@f’ % ¥ 1%
i BF
-0.5 % + ? ﬁ
hy "
-1.0 * ¥
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Figure 5: Auto-Regressive residuals
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Adaptive Conformal Inference



Online sequential split conformal prediction (OSSCP)
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Figure 6: Diagram describing the online sequential split conformal
prediction.
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Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

Refitting the model may be insufficient = adapt the quantile leve
used on the calibration's scores.

13/21



Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

Refitting the model may be insufficient = adapt the quantile leve
used on the calibration's scores. (Distribution shift)

13/21



Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

Refitting the model may be insufficient = adapt the quantile level
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The proposed update scheme is the following:

Qg1 = o + 7y (00— erry) (2)
with: R
N ST A TN
0 otherwise |,
and a; = o, v > 0.
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Refitting the model may be insufficient = adapt the quantile level
used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

Qg1 = o+ (a —erry) (2)
with: .
err, = Lif y; ¢ .Cat (Xt) )
0 otherwise |,
and a; = o, v > 0.

Intuition: if we did make an error, the interval was too small so
we want to increase its length by taking a higher quantile (a
smaller cv¢). Reversely if we included the point.
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Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

Refitting the model may be insufficient = adapt the quantile level
used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

Qg1 = o + 7y (00— erry) (2)
with: R
N ST A TN
0 otherwise |,
and a; = o, v > 0.

Intuition: if we did make an error, the interval was too small so
we want to increase its length by taking a higher quantile (a
smaller at). Reversely if we included the point.

Gibbs and Candés (2021) provide asymptotic validity result for any

distribution.
13/21



Visualisation of the procedure
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Visualisation of the procedure
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AgACI




AgACI: adaptive wrapper around ACI, setting

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,
2006) computes an optimal weighted mean of experts. The
weights assigned to each expert depend on all experts

losses/performances at previous time steps.
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AgACI: adaptive wrapper around ACI, setting

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,
2006) computes an optimal weighted mean of experts. The
weights assigned to each expert depend on all experts

losses/performances at previous time steps.

AgACT performs 2 independent aggregations: one for each bound
(the upper and lower ones).

The experts are K versions of ACI with a different ~y in {(vk)k<k}-

The pinball loss (usual in quantile regression) is used to assess the
performances of each expert. The pinball loss of level 1 — a//2 for
the upper bound, and of for the bound.
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AgACI: adaptive wrapper around ACI
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AgACI: adaptive wrapper around ACI

Experts Previous upper

bounds

s (time)
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AgACI: adaptive wrapper around ACI

Experts Previous upper Weights
bounds

s (time)
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AgACI: adaptive wrapper around ACI
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AgACI: adaptive wrapper around ACI
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AgACI: adaptive wrapper around ACI
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Comparison on simulated data



Data generation and simulation settings
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Data generation and simulation settings

Y; = 10sin (mX¢.1 Xe 2) + 20 (X3 — 0.5)> + 10Xe 4 + 5X¢ 5 + &4
where the X;. ~ U([0,1]) and &; is an ARMA(1,1) process:
Et41 = et + &1 + 0,

with & is a white noise of variance .

e =6 range in [0.1,0.8,0.9,0.95,0.99].
e We fix o to keep the variance Var(e¢) constant to 10 (or 1).

e We use random forest as regressor.

e For each setting (pair variance and ¢,6):
o 300 points, the last 100 kept for prediction and evaluation,

o 500 repetitions,
= in total, 100 x 500 = 50000 predictions are evaluated.

17/21



Visualisation of the results

A

Length
~ efficiency

Y.

Coverage
~ validity
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Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

®  OSSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.01
o Offline SSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.05
x EnbPI (Xu & Xie, 2021) * AgACI

+ EnbPI V2

141 "
& 0 n
p=60=0.1
5 1 ° p=0=08
= 131 ¢
2 o=0=09
g * ©=0=09
T 19 L] * p=0=099

Average 1

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.01
Coverage

19/21



Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

®  OSSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.01
o Offline SSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.05
x EnbPI (Xu & Xie, 2021) * AgACI

+ EnbPI V2

144 L £
g
p=60=0.1
5 1 ° p=0=08
= 131 ¢
2 o=0=09
g * ©=0=09
T 19 L] * p=0=099

Average 1

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.01
Coverage

19/21



Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

dian length

Average 1

®  OSSCP (adapted from Lei et al., 2018)
o Offline SSCP (adapted from Lei et al., 2018)
x EnbPI (Xu & Xie, 2021) * AgACI
+ EnbPI V2
& S
]
o
083 084 085 036 087 088 08 090 001

Coverage

¢ ACI (Gibbs & Candes, 2021), v = 0.01
¢ ACI (Gibbs & Candes, 2021), v = 0.05

p=60=0.1
o p=0=08
0=0=09
o »=0=095
e ©=0=099

19/21



Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

dian length

Average 1

®  OSSCP (adapted from Lei et al., 2018)
o Offline SSCP (adapted from Lei et al., 2018)
x EnbPI (Xu & Xie, 2021) * AgACI
+ EnbPI V2
& S
x //
%
o
%
083 084 085 036 087 088 08 090 001

Coverage

¢ ACI (Gibbs & Candes, 2021), v = 0.01
¢ ACI (Gibbs & Candes, 2021), v = 0.05

p=60=0.1
o p=0=08
0=0=09
o »=0=095
e ©=0=099

19/21



Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

dian length

Average 1

¢ ACI (Gibbs & Candes, 2021), v = 0.01
¢ ACI (Gibbs & Candes, 2021), v = 0.05

®  OSSCP (adapted from Lei et al., 2018)
o Offline SSCP (adapted from Lei et al., 2018)
x EnbPI (Xu & Xie, 2021) * AgACI
+ EnbPI V2
\ Bt l
¢ ’ *
+
+ L ¢
+ : ¢+
0.895 0900  0.905 »
o
X +
083 084 08 086 087 08 089 090 001
Coverage

p=60=0.1
o p=0=08
0=0=09
o »=0=095
e ©=0=099

19/21



Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

®  OSSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.01
o Offline SSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.05
x EnbPI (Xu & Xie, 2021) * AgACI
+ EnbPI V2
14 § i
0\ H LR/ npe |
& - B 4 e
\‘ p=0=0.1
o .
= 134 H + * p=0=08
=X :
E 8 0=0=09
g P + ‘ ¢ o p=0=095
2120 08% 0900 0.905 * * 9=0=09
<11
* +
101

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.01
Coverage

19/21



Results: impact of the temporal dependence, ARMA(1,1), vari-

ance 10

®  OSSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.01
o Offline SSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.05
x EnbPI (Xu & Xie, 2021) * AgACI
+ EnbPI V2
14 i
N & L] o e S
5 ot ¥ o =0=01
= 13 : N o »=0=08
) H
2 : . 0=0=09
o + L ¢ =6 =095
= + : ¢+ * ¢ =605
2127 0805 0900 0905 " © p=0=099
<11
* +
101

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.01
Coverage

19/21



Concluding remarks
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Contributions and messages

o ACI useful for general time series

e Empirical proposition of an adaptive choice of v: AgACI
— Perspective: refined analysis of AgACI and expert
aggregation
o Theoretical guarantees about validity: what happens to the
asymptotic result when aggregated?

o Analysis of the obtained efficiency
o More data sets
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Contributions and messages

e More contributions in our
paper!
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Thank you! Questions?
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Available methods for non-exchangeable
data, in the context of time series
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How to adapt to time series?

Usual ideas from the time series literature:

e Consider an online procedure (for each new data, re-train and
re-calibrate)
— update to recent observations (trend impact, period of the
seasonality, dependence...)
e Use a sequential split
— use only the past so as to correctly estimate the variance of
the residuals (using the future leads to optimistic residuals and
underestimation of their variance)
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Figure 8: Diagram describing the online sequential split conformal
prediction.
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Online sequential split conformal prediction (OSSCP)

|
t=0 t=To

Proper training set [:] Calibration set Test point

Figure 8: Diagram describing the online sequential split conformal
prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

— tested on real time series



EnbPl, Xu and Xie (2021)
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Figure 9: Diagram describing the EnbPI algorithm.
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Figure 9: Diagram describing the EnbPI algorithm.

— tested on other real time series

< compared to offline methods
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Approach

Aim: derive theoretical results on the average length of ACI

depending on ~y
— Guideline for choosing ~

Approach: consider extreme cases (useful in an adversarial context)
with simple theoretical distributions (additional assumptions)
1. exchangeable

2. Auto-Regressive case (AR(1))



Theoretical analysis of ACI’s length: exchangeable case

Define L(at) = 2Q(1 — at) the length of the interval predicted by
the adaptive algorithm at time t, and Ly = 2Q(1 — «) the length
of the interval predicted by the non-adaptive algorithm (v = 0).

Theorem

Assume the scores are exchangeable with quantile function Q
perfectly estimated at each time, and other assumptions.

Then, for all v > 0, (at),~q forms a Markov Chain, that admits a
stationary distribution 7., and
T

1 a.s, not. ~
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Theoretical analysis of ACI’s length: exchangeable case

Define L(at) = 2Q(1 — at) the length of the interval predicted by
the adaptive algorithm at time t, and the length
of the interval predicted by the non-adaptive algorithm ( ).

Theorem

Assume the scores are exchangeable with quantile function Q
perfectly estimated at each time, and other assumptions.

Then, for all v > 0, (at),~q forms a Markov Chain, that admits a
stationary distribution 7., and
T

1 a.s, not. ~

- tzl L) =5 Bn, 1] = B, [L(@)]:
Moreover, as v — 0,

— 2l 3/2
Er, [L] = Lo+ Q"(1 — a)5a(1 - a) + O(+*/%).



Theoretical analysis of ACI’s length: exchangeable case

Define L(at) = 2Q(1 — at) the length of the interval predicted by
the adaptive algorithm at time t, and Ly = 2Q(1 — «) the length
of the interval predicted by the non-adaptive algorithm (v = 0).

Theorem

Assume the scores are exchangeable with quantile function Q
perfectly estimated at each time, and other assumptions.

Then, for all v > 0, (at),~q forms a Markov Chain, that admits a
stationary distribution 7., and
T

1 a.s, not. ~

- tzl L(a) el E. [L] & Eaor, [L(&)].
Moreover, as v — 0,

o gl 3/2
Er,[L] = Lo+ Q"(1 - a) a(l - a) + 0(y*?).



Theoretical analysis of ACI’s length: exchangeable case

Define L(at) = 2Q(1 — at) the length of the interval predicted by
the adaptive algorithm at time t, and Ly = 2Q(1 — «) the length
of the interval predicted by the non-adaptive algorithm (v = 0).

Theorem

Assume the scores are exchangeable with quantile function Q
perfectly estimated at each time, and other assumptions.

Then, for all v > 0, (at),~q forms a Markov Chain, that admits a
stationary distribution 7., and

.

1 .S. not. =

7ZL(%) T"”—} E. [L] & Eaor, [L(&)].
t=1

—r+00
Moreover, as v — 0,

Er[L] = Lo+ Q"(1— )] + 0(y*2).



Theoretical analysis of ACI’s length: exchangeable case

Define L(at) = 2Q(1 — at) the length of the interval predicted by
the adaptive algorithm at time t, and Ly = 2Q(1 — «) the length
of the interval predicted by the non-adaptive algorithm (v = 0).

Theorem

Assume the scores are exchangeable with quantile function Q
perfectly estimated at each time, and other assumptions.

Then, for all v > 0, (at),~q forms a Markov Chain, that admits a
stationary distribution 7., and
T
1 a.s, not. ~
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Theoretical analysis of ACl’s length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: ér11 = @€t + &t
with (&)¢ i.i.d. random variables and other assumptions, we

have:

T“MD[L]'

T—>oo



Numerical analysis of ACI’s length: AR(1) case
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Figure 10: Average length depending on ~ for each .



Numerical analysis of ACI’s length: AR(1) case, cont’d
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Figure 11: +* minimizing the average length for each ¢.



Price prediction with confidence in 2019



Electricity Spot prices
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Figure 12: Drawing of spot auctions mechanism



French Electricity Spot prices data set: visualisation
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Figure 13: Representation of the French electricity spot price, from 2016
to 2019.



French Electricity Spot prices data set: extract

Date and time Price Price D-1 Price D-7  For. cons. DOW

11/01/16 OPM | 21.95 15.58 13.78 58800 Monday

11/01/16 1PM | 20.04 19.05 13.44 57600 Monday

12/01/16 OPM | 21.51 21.95 25.03 61600 Tuesday

12/01/16 1PM | 19.81 20.04 24.42 59800 Tuesday

18/01/16 OPM | 38.14 37.86 21.95 70400 Monday
35.66 34.60 20.04 69500

18/01/16 1PM

Monday

Table 1: Extract of the built data set, for French electricity spot price

forecasting.
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French Electricity Spot prices data set: extract

Date and time | Price  Price D-1 Price D-7 For. cons. DOW
11/01/16 OPM | 21.95 15.58 13.78 58800 Monday
11/01/16 1PM | 20.04 19.05 13.44 57600 Monday
12/01/16 OPM | 21.51 21.95 25.03 61600 Tuesday
12/01/16 1PM | 19.81 20.04 24.42 59800 Tuesday
18/01/16 OPM | 38.14 37.86 21.95 70400 Monday
35.66 34.60 20.04 69500 Monday

18/01/16 1PM

Table 1: Extract of the built data set, for French electricity spot price

forecasting.
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e Forecast for the year 2019.

e Random forest regressor.

e One model per hour, we concatenate the predictions
afterwards.

— 24 models

oyr€R
ox€RY, withd= 24 + 24 + 1+ 7 =56

24 prices of the day before
24 prices of the 7 days before

Forecasted consumption

Encoded day of the week



e Forecast for the year 2019.
e Random forest regressor.

e One model per hour, we concatenate the predictions
afterwards.
— 24 models

oyr€R
ox €ERY withd= 24 + 24 + 1 + 7 =56
o 3 years for training/calibration, i.e. Ty = 1096 observations



e Forecast for the year 2019.
e Random forest regressor.
e One model per hour, we concatenate the predictions
afterwards.
— 24 models

oyt €R

ox €RY withd= 24 + 24 + 1 +7 =56

o 3 years for training/calibration, i.e. Ty = 1096 observations
o 1 year to forecast, i.e. T; = 365 observations



Performance on predicted French electricity Spot price for the

year 2019
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Performance on predicted French electricity Spot price:

visualisation of a day

— Observed price
1251 Predicted price

Predicted interval

Spot price (€/MWh)
S

751 \
501
P A O N SN
NN I I I I\
> > > > N3 N3
IS S S

Figure 14: French electricity spot price, its prediction and its
with AgACI.



Be careful at conditional guarantees!

Coverage by day-of-the-week
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Figure 15: Empirical coverage of AgACl depending on the
day-of-the-week.
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