
Adaptive Conformal Predictions for Time Series

An application to forecasting French electricity Spot prices

Margaux Zaffran

7th Mathematical Statistics Day – Informal Conference on Conformal Inference



Olivier Féron
EDF R&D

FiME

Yannig Goude
EDF R&D

LMO

Julie Josse
PreMeDICaL

INRIA

Aymeric

Dieuleveut
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Electricity Spot prices

Figure 1: Drawing of spot auctions mechanism
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French Electricity Spot prices data set: visualisation
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Figure 2: Representation of the French electricity spot prices, from 2016 to 2019.
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French Electricity Spot prices data set: extract

Date and time Price Price D-1 Price D-7 For. cons. DOW

11/01/16 0PM 21.95 15.58 13.78 58800 Monday

11/01/16 1PM 20.04 19.05 13.44 57600 Monday
...

...
...

...
...

...

12/01/16 0PM 21.51 21.95 25.03 61600 Tuesday

12/01/16 1PM 19.81 20.04 24.42 59800 Tuesday
...

...
...

...
...

...

18/01/16 0PM 38.14 37.86 21.95 70400 Monday

18/01/16 1PM 35.66 34.60 20.04 69500 Monday
...

...
...

...
...

...

Table 1: Extract of the built data set, for French electricity spot price forecasting.

• Yt ∈ R
• Xt ∈ Rd
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Forecasting French electricity Spot prices
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Figure 3: French electricity spot price and its prediction with random forest.

↪→ (Xt ,Yt) ∈ Rd ×R (d = 56, details later)

↪→ 3 years for training

↪→ 1 year to forecast

5 / 32



Forecasting French electricity Spot prices with confidence
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Figure 4: French electricity spot price, its prediction and its uncertainty with AgACI

(proposed algorithm).

• Target coverage: 90%

• Empirical coverage: 91.68%
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Generalizing beyond exchangeability in theory

Two major general theoretical results beyond exchangeability:

• Chernozhukov et al. (2018)

↪→ If the learnt model is accurate and the data noise is strongly mixing, then

CP is valid asymptotically 3

• Barber et al. (2022)

↪→ Quantifies the coverage loss depending on the strength of exchangeability

violation

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α− average violation of exchangeability
by each calibration point

↪→ proposed algorithm: reweighting (again)!

e.g., in a temporal setting, give higher weights to more recent points.
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Exchangeability does not hold in many practical applications

CP requires exchangeable data points to ensure validity

7 Covariate shift, i.e. LX changes but LY |X stays constant

(see e.g., Tibshirani et al., 2019)

7 Label shift, i.e. LY changes but LX |Y stays constant

(see e.g., Podkopaev and Ramdas, 2021)

7 Arbitrary distribution shift

(see e.g., Cauchois et al., 2020)

7

Possibly many shifts, not only one

(main focus of this presentation)
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Online setting

• Data: T0 random variables (X1,Y1), . . . , (XT0 ,YT0) in Rd ×R
• Aim: predict the response values as well as predictive intervals for T1 subsequent

observations XT0+1, . . . ,XT0+T1 sequentially:

at any prediction step t ∈ JT0+1,T0+T1K, Yt−T0 , . . . ,Yt−1 have been revealed

• Build the smallest interval Ĉ t
α such that:

P
{
Yt ∈ Ĉ t

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K,

often simplified in:

1

T1

T0+T1∑
t=T0+1

1
{
Yt ∈ Ĉ t

α (Xt)
}
≈ 1− α.
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Split Conformal Prediction (Vovk et al., 2005): scheme
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(Online) Time series are not exchangeable

Figure 5: Trend1
Figure 6: Seasonality1

Figure 7: Shift Figure 8: Time dependence

1Images from Yannig Goude class material. 11 / 32



Non-exchangeable even if the noise is exchangeable

Assume the following model:

Yt = ft(Xt) + εt , for t ∈ N∗,
for some function ft , and some noise εt .

Even if the noise (εt)t is exchangeable, we can produce dependent residuals.

Figure 9: Auto-Regressive residuals
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How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and re-calibrate)

↪→ update to recent observations (trend impact, period of the seasonality,

dependence...)

• Use a sequential split

↪→ use only the past so as to correctly estimate the variance of the residuals (using

the future leads to optimistic residuals and underestimation of their variance)
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Online sequential split conformal prediction (OSSCP)

t = T0 + T1
t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Wisniewski et al. (2020); Kath and Ziel (2021); Zaffran et al. (2022)

↪→ tested on real time series
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Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient ⇒ adapt the quantile level used on the

calibration’s scores. (distribution shift)

The proposed update scheme is the following:

αt+1 := αt + γ
(
α− 1{Yt /∈ Ĉαt (Xt)}

)
(1)

with α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so we want to

increase its length by taking a higher quantile (a smaller αt). Reversely if we

included the point.
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Visualisation of the procedure
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Figure 10: Visualisation of ACI with different values of γ (γ = 0, γ = 0.01, γ = 0.05)
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ACI asymptotic result

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of

observations.

∣∣∣∣∣∣ 1

T1

T0+T1∑
t=T0+1

1
{
Yt ∈ Ĉαt (Xt)

}
− (1− α)

∣∣∣∣∣∣ ≤ 2

γT1

⇒ favors large γ. But, the higher γ, the more frequent are the infinite intervals.
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Approach

Aim: derive theoretical results on the average length of ACI depending on γ

↪→ Guideline for choosing γ

Approach:

• consider extreme cases (useful in an online context) with simple theoretical
distributions

1. exchangeable

2. Auto-Regressive case (AR(1))

• Assume the calibration is perfect (and more), to rely on Markov Chain theory
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Theoretical analysis of ACI’s length: exchangeable case

Define L(αt) = 2Q(1− αt) the length of the interval predicted by the adaptive

algorithm at time t, and L0 = 2Q(1− α) the length of the interval predicted by

the non-adaptive algorithm (γ = 0).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated

at each time, and other assumptions.

Then, for all γ > 0, (αt)t>0 forms a Markov Chain, that admits a stationary

distribution πγ , and

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ [L]

not.
= Eα̃∼πγ [L(α̃)].

Moreover, as γ → 0,

Eπγ [L] = L0 + Q ′′(1− α)
γ

2
α(1− α) + O(γ3/2).
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Numerical analysis of ACI’s length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: ε̂t+1 = ϕε̂t + ξt+1 with (ξt)t i.i.d.

random variables and other assumptions, we have:

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ,ϕ [L].
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Figure 11: γ∗ minimizing the average length for each ϕ.
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AgACI: adaptive wrapper around ACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes

an optimal weighted mean of experts.

AgACI performs 2 independent aggregations: one for each bound (the upper and

lower ones), based on the pinball loss.
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AgACI: adaptive wrapper around ACI, scheme (upper bound)
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Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.
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Visualisation of the results
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Results: impact of the temporal dependence, ARMA(1,1), variance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
ve

ra
ge

m
ed

ia
n

le
n

gt
h

0.895 0.900 0.905

OSSCP (adapted from Lei et al., 2018)

Offline SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), γ = 0.01

ACI (Gibbs & Candès, 2021), γ = 0.05

AgACI

ϕ = θ =0.1

ϕ = θ =0.8

ϕ = θ =0.9

ϕ = θ =0.95

ϕ = θ =0.99

25 / 32



Summary

1. The temporal dependence impacts the validity.

2. Online is significantly better than offline.

3. OSSCP. Achieves valid coverage for ϕ and θ smaller than 0.9, but is not

robust to the increasing dependence.

4. EnbPI. Its validity strongly depends on the data distribution. When the

method is valid, it produces the smallest intervals. EnbPI V2 method should

be preferred.

5. ACI. Achieves valid coverage for every simulation settings with a well chosen

γ, or for dependence such that ϕ < 0.95. It is robust to the strength of the

dependence.

6. AgACI. Achieves valid coverage for every simulation settings, with good

efficiency.
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Forecasting electricity prices with confidence
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Figure 12: Representation of the French electricity spot price, from 2016 to 2019.
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Forecasting electricity prices with confidence in 2019

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions afterwards.

↪→ 24 models

◦ yt ∈ R
◦ xt ∈ Rd , with d = 24 + 24 + 1 + 7 = 56

◦ 3 years for training/calibration, i.e. T0 = 1096 observations

◦ 1 year to forecast, i.e. T1 = 365 observations

24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week
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Performance on predicted French electricity Spot price for the year 2019
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Performance on predicted French electricity Spot price:

visualisation of a day
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Figure 13: French electricity spot price, its prediction and its uncertainty with AgACI.
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Take-home-messages

• Theoretical results on ACI’s length depending on γ

• ACI useful for time series with general dependency (extensive synthetic

experiments and real data)

• Empirical proposition of an adaptive choice of γ: AgACI
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Recent developments

• Gibbs and Candès (2022) later on also proposes a method not requiring to

choose γ

• Bhatnagar et al. (2023) enjoys anytime regret bound, by leveraging tools from

the strongly adaptive regret minimization literature

• Feldman et al. (2023) extends ACI to general risk control

• Bastani et al. (2022) proposes an algorithm achieving stronger coverage guar-

antees (conditional on specified overlapping subsets, and threshold calibrated)

without hold-out set

• Angelopoulos et al. (2023) combines CP ideas with control theory ones, to

adaptively improve the predictive intervals depending on the errors structure

Non exhaustive references.
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Questions? :)

Thanks for listening and feel free to reach out!

Paper −→
Code −→

Summary −→

https://mzaffran.github.io/acp-ts/
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Examples of non-exchangeable scores with

exchangeable noise



Endogenous and not perfectly estimated

Assume Xt = Yt−1 ∈ R and that

Yt = aYt−1 + εt ,

where εt is a white noise.

Assume that the fitted model is f̂t(x) = âx , with â 6= a.

Then, for any t, we have that:

ε̂t = Yt − Ŷt = (a− â)Yt−1 + εt

ε̂t = aε̂t−1 + ξt

with ξt = εt − âεt−1.

ε̂t is an ARMA process of parameters ϕ = a and θ = −â.

Thus, we have generated dependent residuals (ARMA residuals) even if the

underlying model only had white noise.



Exogenous and misspecified

Assume Xt ∈ R2 and that:

Yt = aX1,t + bX2,t + εt ,

with εt ∼
i.i.d.
N (0, 1), X2,t+1 = ϕX2,t + ξt , ξt ∼

i.i.d.
N (0, 1) and X1,t can be any

random variable.

Assume that we misspecify the model such that the fitted model is f̂t(x) = ax1.

Then, for any t, we have that

ε̂t = Yt − Ŷt = bX2,t + εt .

Thus, we have generated dependent residuals (auto-regressive residuals) even if the

underlying model only had i.i.d. Gaussian noise.



Analysis of ACI’s efficiency depending on γ



Numerical analysis of ACI’s length: AR(1) case

Assume the residuals follow an AR(1) process: ε̂t+1 = ϕε̂t + ξt+1 with (ξt)t i.i.d.

random variables and other assumptions, we have:

1

T

T∑
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L(αt)
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Eπγ,ϕ [L].
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Figure 14: Left: evolution of the mean length depending on γ for various ϕ. Right: γ∗

minimizing the average length for each ϕ.



EnbPI



EnbPI, Xu and Xie (2021)

t = 0 t = T0 t = T0 + T1


Test pointTraining set Calibration set

Figure 15: Diagram describing the EnbPI algorithm.

↪→ tested on other real time series

↪→ compared to offline methods

EnbPI (ICML, Xu and Xie, 2021) aggregates with 2 different functions.

⇒ We propose EnbPI V2 with the same aggregation function all along (similar to

EnbPI on last ArXiV version from Xu and Xie).



Details on the simulation set up



Data generation

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt are multivariate uniformly distributed on [0, 1] and εt are generated

from an ARMA(1,1) process.

⇒ dependence structure in the noise in order to:

• control the strength of the scores dependence,

• evaluate the impact of this temporal dependence structure of the results.



Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that εt is an ARMA(1,1) process if for any t:

εt+1 = ϕεt + ξt+1 + θξt ,

with:

• θ + ϕ 6= 0, |ϕ| < 1 and |θ| < 1;

• ξt is a white noise of variance σ2, called the innovation.

• The higher ϕ and θ, the stronger the dependence.

• The asymptotic variance of this process is:

Var(εt) = σ2
1− 2ϕθ + θ2

1− ϕ2
.

• If θ = 0, only the auto-regressive part, it is an AR(1).

• If ϕ = 0, only the moving-average part, it is an MA(1).



Simulation settings

• ϕ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ so as to keep the variance Var(εt) constant to 1 or 10.

• We use random forest as regressor.

For each setting:

• 300 points, the last 100 kept for prediction and evaluation,

• 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

We present the results in the ARMA(1,1) case, but we also have them for AR(1)

and MA(1) processes.



Additional results on the synthetic data sets



Empirical evaluation of ACI sensitivity to γ and adaptive choice
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⇒ The more the dependence, the more sensitive to γ is ACI. Naive method (O):

smallest among valid ones in the past ⇒ accumulates error of the different ACI’s

versions. AgACI (F): encouraging preliminary results.



Empirical evaluation of ACI sensitivity to γ and adaptive choice, AR(1)
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Empirical evaluation of ACI sensitivity to γ and adaptive choice, MA(1)
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Results: impact of the temporal dependence, ARMA(1), variance 10, average

length after imputation
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Results: impact of the temporal dependence, AR(1) and MA(1), variance 10
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Results: impact of the temporal dependence, AR(1) and MA(1), variance 10,

average length after imputation
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Additional results on the French electricity spot prices



Forecasting French electricity Spot prices with confidence: results

• Target coverage: 90%

• Empirical coverage: 91.68%

• Median length: 22.76e/MWh



Performance on predicted French electricity Spot price:

visualisation of a day
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Figure 16: OSSCP
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Figure 17: EnbPI V2
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Figure 18: ACI with γ = 0.01
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Figure 19: ACI with γ = 0.05
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