Adaptive Conformal Predictions for Time Series

An application to forecasting French electricity Spot prices

Margaux Zaffran 28/07/2022

Yaniv Romano's Group Meeting

Olivier Féron

Yannig Goude Julie Josse

Aymeric Dieuleveut Ecole Polytechnique **Paris**

EDF R&D **FiME** Paris

LMO Paris

EDF R&D INRIA **IDESP** Montpellier France

Forecasting French electricity Spot prices

Electricity Spot prices

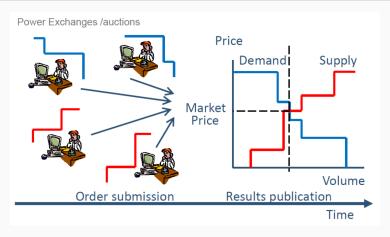


Figure 1: Drawing of spot auctions mechanism

French Electricity Spot prices data set: visualisation

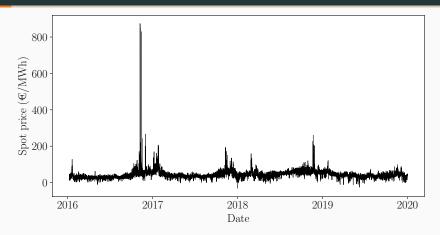


Figure 2: Representation of the French electricity spot price, from 2016 to 2019.

French Electricity Spot prices data set: extract

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:	:	:	:	:	:
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
:	:	:	÷	i:	:
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/01/16 1PM	35.66	34.60	20.04	69500	Monday
:	:	÷	:	÷	:

Table 1: Extract of the built data set, for French electricity spot price forecasting.

French Electricity Spot prices data set: extract

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:	:	:	:	:	:
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
:	:	:	:	:	:
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/01/16 1PM	35.66	34.60	20.04	69500	Monday
:	:	:	÷	:	÷

Table 1: Extract of the built data set, for French electricity spot price forecasting.

• $y_t \in \mathbb{R}$

French Electricity Spot prices data set: extract

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:	:	:	:	:	:
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
:	:	:	:	:	:
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/01/16 1PM	35.66	34.60	20.04	69500	Monday
:	:	:	:	:	:

Table 1: Extract of the built data set, for French electricity spot price forecasting.

- $y_t \in \mathbb{R}$
- $x_t \in \mathbb{R}^d$

Forecasting French electricity Spot prices

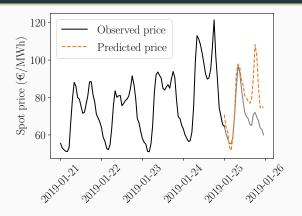


Figure 3: French electricity spot price and its prediction with random forest.

- $\hookrightarrow (x_t, y_t) \in \mathbb{R}^d \times \mathbb{R} \; (d = 56, \, ext{details later})$
- \hookrightarrow 3 years for training
- \hookrightarrow 1 year to forecast

Forecasting French electricity Spot prices with confidence

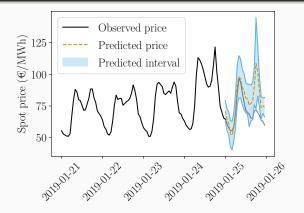


Figure 4: French electricity spot price, its <u>prediction</u> and its <u>uncertainty</u> with AgACI (proposed algorithm).

• Target coverage: 90%

• Empirical coverage: 91.68%

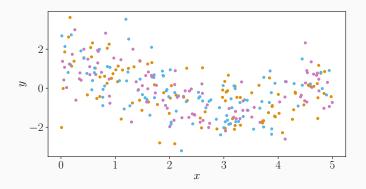
Conformal prediction and time series,

what's the issue?

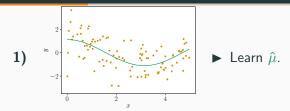
Framework and notations

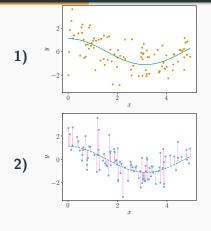
- Data: T_0 observations $(x_1, y_1), \dots, (x_{T_0}, y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$
- Aim: predict the response values as well as predictive intervals for T_1 subsequent observations $x_{T_0+1}, \ldots, x_{T_0+T_1}$
- \hookrightarrow Build the smallest interval \mathcal{C}^t_{α} such that:

$$\mathbb{P}\left\{Y_t \in \mathcal{C}^t_{\alpha}\left(X_t\right)\right\} \ge 1 - \alpha, \text{ for } t \in [T_0 + 1, T_0 + T_1].$$



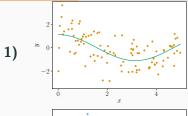
Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.



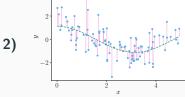


▶ Learn $\hat{\mu}$.

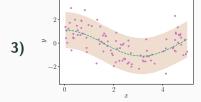
- ▶ Predict with $\hat{\mu}$.
- ▶ Get the residuals $\hat{\varepsilon}_i$ and form the scores $s_i = |\hat{\varepsilon}_i|$.
- ► Get their $(1 \alpha) \times (1 + \frac{1}{\# \operatorname{Cal}})$ empirical quantile: $Q_{1-\hat{\alpha}}(s_i)$.



▶ Learn $\hat{\mu}$.



- ▶ Predict with $\hat{\mu}$.
- ▶ Get the residuals $\hat{\varepsilon}_i$ and form the scores $s_i = |\hat{\varepsilon}_i|$.
- ► Get their $(1 \alpha) \times (1 + \frac{1}{\#\operatorname{Cal}})$ empirical quantile: $Q_{1-\hat{\alpha}}(s_i)$.
- ▶ Predict with $\hat{\mu}$.
- ▶ Build $\hat{C}_{\hat{\alpha}}(x)$: $[\hat{\mu}(x) \pm Q_{1-\hat{\alpha}}(s_i)].$



Split Conformal Prediction: guarantees

Split conformal prediction is simple to compute and satisfies:

$$\mathbb{P}\left\{Y_{n+1}\in\hat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha.$$

Split Conformal Prediction: guarantees

Split conformal prediction is simple to compute and satisfies:

$$\mathbb{P}\left\{Y_{n+1}\in\hat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha.$$

This holds:

- with any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;

in finite sample.

Split Conformal Prediction: guarantees

Split conformal prediction is simple to compute and satisfies:

$$\mathbb{P}\left\{Y_{n+1}\in\hat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha.$$

This holds:

- with any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;
- in finite sample.

Time series are not exchangeable

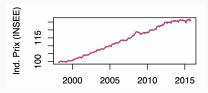


Figure 5: Trend¹

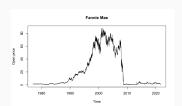


Figure 7: Shift

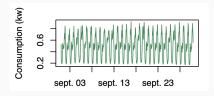


Figure 6: Seasonality¹

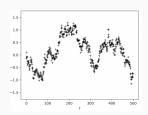


Figure 8: Time dependence

¹Images from Yannig Goude class material.

Non-exchangeable even if the noise is exchangeable

Assume the following model:

$$Y_t = f_t(X_t) + \varepsilon_t$$
, for $t \in \mathbb{N}^*$,

for some function f_t , and some noise ε_t .

Even if the noise ε_t is exchangeable, we can produce dependent residuals.

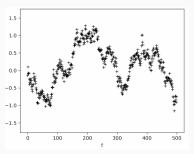


Figure 9: Auto-Regressive residuals

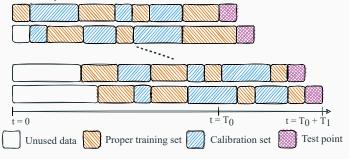
Available methods for non-exchangeable data, in the context of time series

Usual ideas from the time series literature:

 Consider an online procedure (for each new data, re-train and re-calibrate)

Usual ideas from the time series literature:

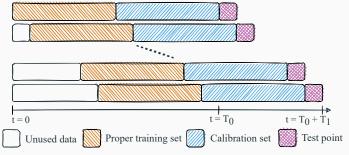
 Consider an online procedure (for each new data, re-train and re-calibrate)



- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split



- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split
 - \hookrightarrow use only the past so as to correctly estimate the variance of the residuals (using the future leads to optimistic residuals and underestimation of their variance)

Online sequential split conformal prediction (OSSCP)

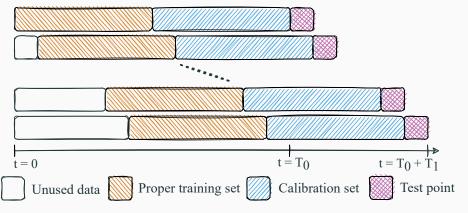


Figure 10: Diagram describing the online sequential split conformal prediction.

Online sequential split conformal prediction (OSSCP)

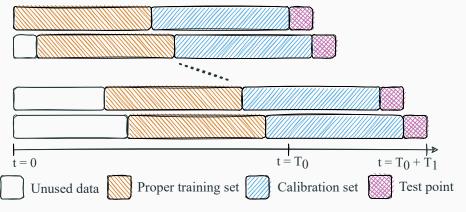


Figure 10: Diagram describing the online sequential split conformal prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

Online sequential split conformal prediction (OSSCP)

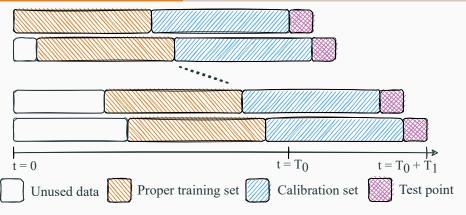


Figure 10: Diagram describing the online sequential split conformal prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

 \hookrightarrow tested on real time series

EnbPI, Xu and Xie (2021)

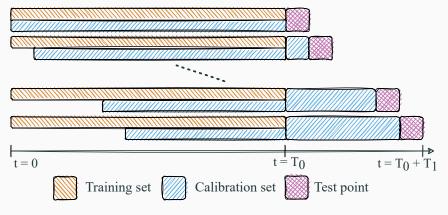


Figure 11: Diagram describing the EnbPl algorithm.

EnbPI, Xu and Xie (2021)

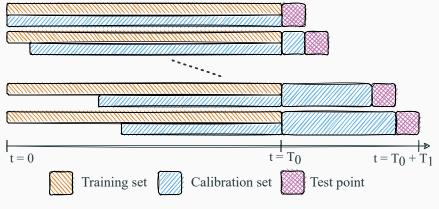


Figure 11: Diagram describing the EnbPl algorithm.

- \hookrightarrow tested on other real time series
- \hookrightarrow compared to offline methods

Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores.

Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (**Distribution shift**)

Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (**Distribution shift**)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathsf{error}_t \right) \tag{1}$$

with:

$$\operatorname{error}_t := \left\{ egin{array}{l} 1 & ext{if } y_t \notin \hat{\mathcal{C}}_{\alpha_t}\left(x_t\right), \\ 0 & ext{otherwise}, \end{array} \right.$$

and $\alpha_1 = \alpha$, $\gamma \geq 0$.

Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (**Distribution shift**)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \mathsf{error}_t \right) \tag{1}$$

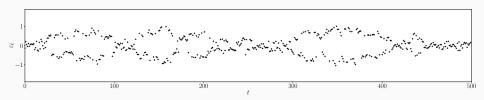
with:

$$\operatorname{error}_t := \left\{ egin{array}{l} 1 & ext{if } y_t
otin \hat{\mathcal{C}}_{lpha_t}\left(x_t
ight), \\ 0 & ext{otherwise}, \end{array}
ight.$$

and $\alpha_1 = \alpha$, $\gamma \geq 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Visualisation of the procedure



Visualisation of the procedure

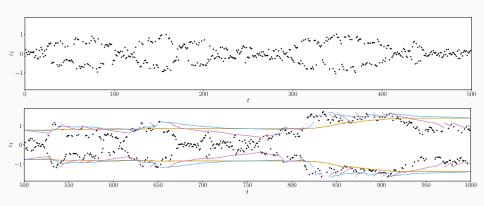


Figure 12: Visualisation of ACI with different values of γ ($\gamma = 0$, $\gamma = 0.01$, $\gamma = 0.05$)

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of observations.

$$\frac{1}{T_1} \sum_{t=T_0+1}^{T_0+T_1} \mathbb{1} \left\{ y_t \in \hat{\mathcal{C}}_{\alpha_t}(x_t) \right\} \xrightarrow[T_1 \to +\infty]{} 1 - \alpha \quad \text{e.g. } 90\%$$

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of observations.

$$\left| \frac{1}{T_1} \sum_{t=T_0+1}^{T_0+T_1} \mathbb{1} \left\{ y_t \in \hat{\mathcal{C}}_{\alpha_t} \left(x_t \right) \right\} - \left(1 - \alpha \right) \right| \leq \frac{2}{\gamma T_1}$$

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of observations.

$$\left| \frac{1}{T_1} \sum_{t=T_0+1}^{T_0+T_1} \mathbb{1} \left\{ y_t \in \hat{\mathcal{C}}_{\alpha_t} \left(x_t \right) \right\} - \left(1 - \alpha \right) \right| \leq \frac{2}{\gamma T_1}$$

 \Rightarrow favors large γ .

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of observations.

$$\left| \frac{1}{T_1} \sum_{t=T_0+1}^{T_0+T_1} \mathbb{1} \left\{ y_t \in \hat{\mathcal{C}}_{\alpha_t} \left(x_t \right) \right\} - \left(1 - \alpha \right) \right| \leq \frac{2}{\gamma T_1}$$

 \Rightarrow favors large γ . But, the higher γ , the more frequent are the infinite intervals.

Theoretical analysis of ACI's length

Approach

 $\underline{\mbox{Aim:}}$ derive theoretical results on the $\mbox{average length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

Approach

 $\underline{\mbox{Aim:}}$ derive theoretical results on the $\mbox{average length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

Approach:

- consider extreme cases (useful in an online context) with simple theoretical distributions
 - 1. exchangeable
 - 2. Auto-Regressive case (AR(1))

Approach

 $\underline{\mbox{Aim:}}$ derive theoretical results on the $\mbox{average length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

Approach:

- consider extreme cases (useful in an online context) with simple theoretical distributions
 - 1. exchangeable
 - 2. Auto-Regressive case (AR(1))
- Assume the calibration is perfect (and more), to rely on Markov Chain theory

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{\text{a.s.}} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{\text{a.s.}} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{\text{a.s.}} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{\text{a.s.}} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{\text{a.s.}} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Theorem (Informal)

If the residuals are exchangeable and if the calibration is perfect, then as $\gamma \to 0$:

Average length of intervals from ACI using γ

=

Average length of intervals from Split Conformal Prediction $+ \gamma \times \mathcal{C}(\alpha, \text{distribution of the data}),$ where $\mathcal{C}(\alpha, \text{distribution of the data}) > 0$ in non-atypical cases.

Numerical analysis of ACI's length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: $\hat{\varepsilon}_{t+1} = \varphi \hat{\varepsilon}_t + \xi_{t+1}$ with $(\xi_t)_t$ i.i.d. random variables and other assumptions, we have:

$$\frac{1}{T} \sum_{t=1}^{I} L(\alpha_t) \xrightarrow[T \to +\infty]{\text{a.s.}} \mathbb{E}_{\pi_{\gamma,\varphi}}[L].$$

Numerical analysis of ACI's length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: $\hat{\varepsilon}_{t+1} = \varphi \hat{\varepsilon}_t + \xi_{t+1}$ with $(\xi_t)_t$ i.i.d. random variables and other assumptions, we have:

$$\frac{1}{T} \sum_{t=1}^{I} L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma,\varphi}}[L].$$

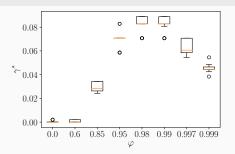


Figure 13: γ^* minimizing the average length for each φ .

AgACI

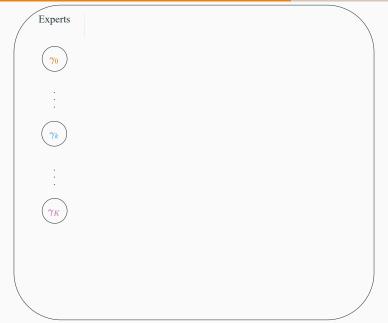
AgACI: adaptive wrapper around ACI

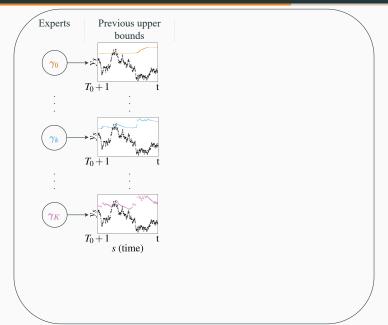
Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes an optimal weighted mean of experts.

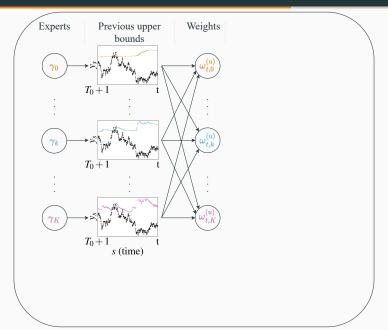
AgACI: adaptive wrapper around ACI

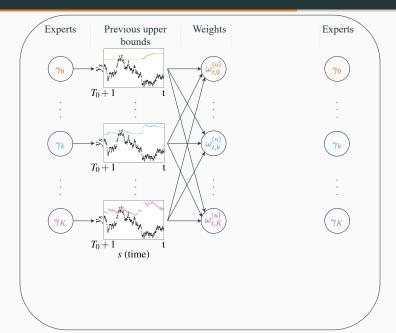
Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes an optimal weighted mean of experts.

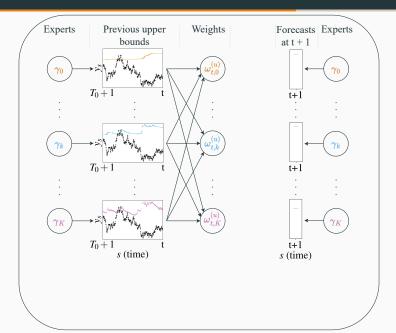
AgACI performs 2 independent aggregations: one for each bound (the upper and lower ones).

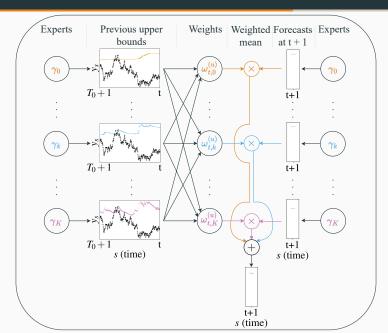












Comparison on simulated data

$$Y_t = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$$

$$Y_t = 10 \sin(\pi X_{t,1} X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t$$
 where the $X_{t,\cdot} \sim \mathcal{U}([0,1])$

$$Y_t = 10 \sin(\pi X_{t,1} X_{t,2}) + 20 (X_{t,3} - 0.5)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t$$
 where the $X_{t,\cdot} \sim \mathcal{U}([0,1])$ and ε_t is an ARMA(1,1) process:

$$Y_t = 10 \sin{(\pi X_{t,1} X_{t,2})} + 20 (X_{t,3} - 0.5)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t$$
 where the $X_{t,\cdot} \sim \mathcal{U}([0,1])$ and ε_t is an ARMA(1,1) process:
$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$
 with ξ_t is a white noise of variance σ^2 .

$$Y_t = 10 \sin{(\pi X_{t,1} X_{t,2})} + 20 (X_{t,3} - 0.5)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t$$
 where the $X_{t,\cdot} \sim \mathcal{U}([0,1])$ and ε_t is an ARMA(1,1) process:
$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$
 with ξ_t is a white noise of variance σ^2 .

• $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].

$$\begin{aligned} Y_t &= 10\sin\left(\pi X_{t,1} X_{t,2}\right) + 20\left(X_{t,3} - 0.5\right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} &\sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA}(1,1) \text{ process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \end{aligned}$$

with ξ_t is a white noise of variance σ^2 .

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance $Var(\varepsilon_t)$ constant to 10 (or 1).

$$\begin{aligned} Y_t &= 10\sin\left(\pi X_{t,1} X_{t,2}\right) + 20\left(X_{t,3} - 0.5\right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} &\sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA}(1,1) \text{ process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \end{aligned}$$

with ξ_t is a white noise of variance σ^2 .

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance $Var(\varepsilon_t)$ constant to 10 (or 1).
- We use random forest as regressor.

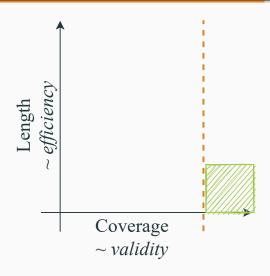
Data generation and simulation settings

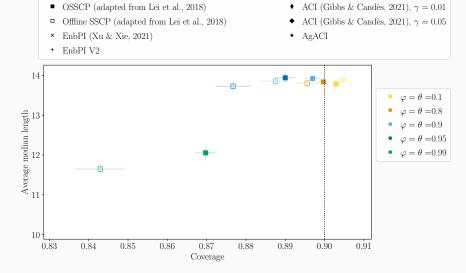
$$\begin{aligned} Y_t &= 10\sin\left(\pi X_{t,1} X_{t,2}\right) + 20\left(X_{t,3} - 0.5\right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} &\sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA}(1,1) \text{ process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \end{aligned}$$

with ξ_t is a white noise of variance σ^2 .

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance $Var(\varepsilon_t)$ constant to 10 (or 1).
- We use random forest as regressor.
- For each setting (pair variance and φ,θ):
 - o 300 points, the last 100 kept for prediction and evaluation,
 - o 500 repetitions,
 - \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

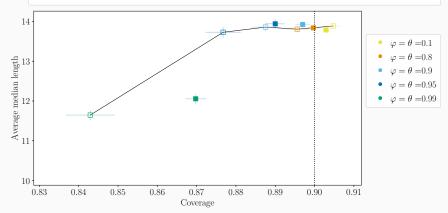
Visualisation of the results





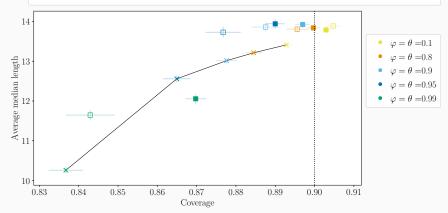
- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- EnbPI (Xu & Xie, 2021)
- + EnbPI V2

- $\bullet~$ ACI (Gibbs & Candès, 2021), $\gamma=0.01$
- $\bullet~$ ACI (Gibbs & Candès, 2021), $\gamma=0.05$
- * AgACI



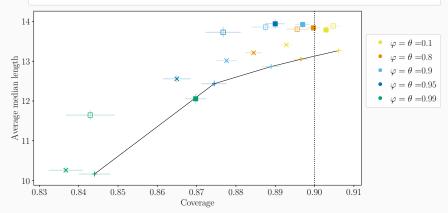
- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- EnbPI (Xu & Xie, 2021)
- + EnbPI V2

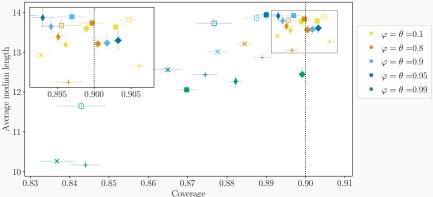
- $\bullet~$ ACI (Gibbs & Candès, 2021), $\gamma=0.01$
- \bullet ACI (Gibbs & Candès, 2021), $\gamma=0.05$
- * AgACI

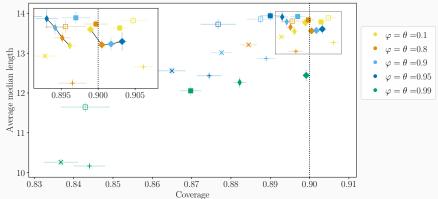


- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- EnbPI (Xu & Xie, 2021)
- + EnbPI V2

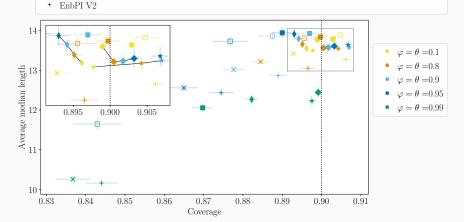
- $\bullet~$ ACI (Gibbs & Candès, 2021), $\gamma=0.01$
- $\bullet~$ ACI (Gibbs & Candès, 2021), $\gamma=0.05$
- * AgACI







■ OSSCP (adapted from Lei et al., 2018) ■ Offline SSCP (adapted from Lei et al., 2018) × EnbPI (Xu & Xie, 2021) • ACI (Gibbs & Candès, 2021), $\gamma = 0.05$ • ACI (Gibbs & Candès, 2021), $\gamma = 0.05$ • AGACI



1. The temporal dependence impacts the *validity*.

- 1. The temporal dependence impacts the *validity*.
- 2. Online is significantly better than offline.

- 1. The temporal dependence impacts the *validity*.
- 2. Online is significantly better than offline.
- 3. **OSSCP.** Achieves *valid* coverage for φ and θ smaller than 0.9, but is not robust to the increasing dependence.

- 1. The temporal dependence impacts the *validity*.
- 2. Online is significantly better than offline.
- 3. **OSSCP.** Achieves *valid* coverage for φ and θ smaller than 0.9, but is not robust to the increasing dependence.
- 4. **EnbPI.** Its *validity* strongly depends on the data distribution. When the method is *valid*, it produces the smallest intervals. EnbPI V2 method should be preferred.

- 1. The temporal dependence impacts the *validity*.
- 2. Online is significantly better than offline.
- 3. **OSSCP.** Achieves *valid* coverage for φ and θ smaller than 0.9, but is not robust to the increasing dependence.
- 4. **EnbPl.** Its *validity* strongly depends on the data distribution. When the method is *valid*, it produces the smallest intervals. EnbPl V2 method should be preferred.
- 5. **ACI.** Achieves *valid* coverage for every simulation settings with a well chosen γ , or for dependence such that $\varphi < 0.95$. It is robust to the strength of the dependence.

- 1. The temporal dependence impacts the validity.
- 2. Online is significantly better than offline.
- 3. **OSSCP.** Achieves *valid* coverage for φ and θ smaller than 0.9, but is not robust to the increasing dependence.
- 4. **EnbPl.** Its *validity* strongly depends on the data distribution. When the method is *valid*, it produces the smallest intervals. EnbPl V2 method should be preferred.
- 5. **ACI.** Achieves *valid* coverage for every simulation settings with a well chosen γ , or for dependence such that $\varphi < 0.95$. It is robust to the strength of the dependence.
- 6. **AgACI.** Achieves *valid* coverage for every simulation settings, with good *efficiency*.

Price prediction with confidence in 2019

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $\circ \ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56

24 prices of the day before

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $\circ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56

24 prices of the day before.

24 prices of the 7 days before.

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $\circ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56

24 prices of the day before

24 prices of the 7 days before.

Forecasted consumption,

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

$$\circ y_t \in \mathbb{R}$$

$$\circ x_t \in \mathbb{R}^d$$
, with $d = 24 + 24 + 1 + 7 = 56$

24 prices of the day before.

24 prices of the 7 days before.

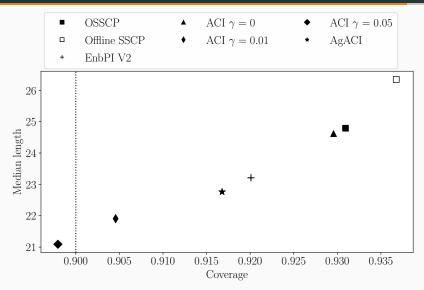
Forecasted consumption

Encoded day of the week

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
 - \circ 3 years for training/calibration, i.e. $T_0 = 1096$ observations

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
 - \circ 3 years for training/calibration, i.e. $T_0 = 1096$ observations
 - \circ 1 year to forecast, i.e. $T_1 = 365$ observations

Performance on predicted French electricity Spot price for the year 2019



Performance on predicted French electricity Spot price: visualisation of a day

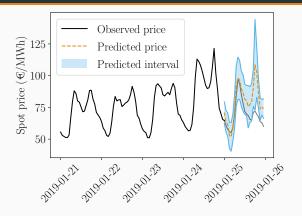


Figure 14: French electricity spot price, its prediction and its uncertainty with AgACI.

Be careful at conditional guarantees!

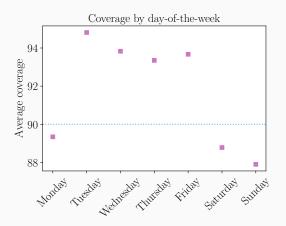


Figure 15: Empirical coverage of AgACI depending on the day-of-the-week.

Concluding remarks

Contributions and messages

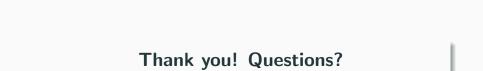
 \bullet Theoretical results on ACI's length depending on γ

Contributions and messages

- \bullet Theoretical results on ACI's length depending on γ
- ACI useful for time series with general dependency (extensive synthetic experiments and real data)

Contributions and messages

- ullet Theoretical results on ACI's length depending on γ
- ACI useful for time series with general dependency (extensive synthetic experiments and real data)
- ullet Empirical proposition of an adaptive choice of γ : AgACI



References i

- Cesa-Bianchi, N. and Lugosi, G. (2006). *Prediction, learning, and games*. Cambridge University Press.
- Gibbs, I. and Candès, E. (2021). Adaptive Conformal Inference Under Distribution Shift. *arXiv:2106.00170 [stat]*. arXiv: 2106.00170.
- Kath, C. and Ziel, F. (2021). Conformal prediction interval estimation and applications to day-ahead and intraday power markets. *International Journal of Forecasting*, 37(2):777–799.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.

References ii

- Wisniewski, W., Lindsay, D., and Lindsay, S. (2020). Application of conformal prediction interval estimations to market makers' net positions. In Gammerman, A., Vovk, V., Luo, Z., Smirnov, E., and Cherubin, G., editors, *Proceedings of the Ninth Symposium on Conformal and Probabilistic Prediction and Applications*, volume 128 of *Proceedings of Machine Learning Research*, pages 285–301. PMLR.
- Xu, C. and Xie, Y. (2021). Conformal prediction interval for dynamic time-series. In Meila, M. and Zhang, T., editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 11559–11569. PMLR.

Examples of non-exchangeable scores with exchangeable noise

Assume
$$X_t = Y_{t-1} \in \mathbb{R}$$
 and that

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume $X_t = Y_{t-1} \in \mathbb{R}$ and that

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Assume $X_t = Y_{t-1} \in \mathbb{R}$ and that

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Then, for any t, we have that:

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = (a - \hat{a}) Y_{t-1} + \varepsilon_t$$
$$\hat{\varepsilon}_t = a\hat{\varepsilon}_{t-1} + \xi_t$$

with $\xi_t = \varepsilon_t - \hat{a}\varepsilon_{t-1}$.

Assume $X_t = Y_{t-1} \in \mathbb{R}$ and that

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Then, for any t, we have that:

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = (a - \hat{a}) Y_{t-1} + \varepsilon_t$$
$$\hat{\varepsilon}_t = a\hat{\varepsilon}_{t-1} + \xi_t$$

with $\xi_t = \varepsilon_t - \hat{a}\varepsilon_{t-1}$.

 $\hat{arepsilon}_t$ is an ARMA process of parameters arphi=a and $\theta=-\hat{a}$.

Assume $X_t = Y_{t-1} \in \mathbb{R}$ and that

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Then, for any t, we have that:

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = (a - \hat{a}) Y_{t-1} + \varepsilon_t$$
$$\hat{\varepsilon}_t = a\hat{\varepsilon}_{t-1} + \xi_t$$

with $\xi_t = \varepsilon_t - \hat{a}\varepsilon_{t-1}$.

 $\hat{arepsilon}_t$ is an ARMA process of parameters arphi=a and $\theta=-\hat{a}$.

Thus, we have generated dependent residuals (ARMA residuals) even if the underlying model only had white noise.

Assume $X_t \in \mathbb{R}^2$ and that:

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \sim \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume $X_t \in \mathbb{R}^2$ and that:

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \sim \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume that we misspecify the model such that the fitted model is $\hat{f}_t(x) = ax_1$.

Assume $X_t \in \mathbb{R}^2$ and that:

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \sim \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume that we misspecify the model such that the fitted model is $\hat{f}_t(x) = ax_1$.

Then, for any t, we have that

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = bX_{2,t} + \varepsilon_t.$$

Assume $X_t \in \mathbb{R}^2$ and that:

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \sim \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume that we misspecify the model such that the fitted model is $\hat{f}_t(x) = ax_1$.

Then, for any t, we have that

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = bX_{2,t} + \varepsilon_t.$$

Thus, we have generated dependent residuals (auto-regressive residuals) even if the underlying model only had i.i.d. Gaussian noise.

Analysis of ACI's efficiency depending on γ

Numerical analysis of ACI's length: AR(1) case

Assume the residuals follow an AR(1) process: $\hat{\varepsilon}_{t+1} = \varphi \hat{\varepsilon}_t + \xi_{t+1}$ with $(\xi_t)_t$ i.i.d. random variables and other assumptions, we have:

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma,\varphi}}[L].$$

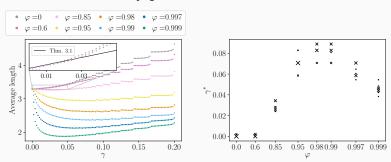


Figure 16: Left: evolution of the mean length depending on γ for various φ . Right: γ^* minimizing the average length for each φ .

EnbPI

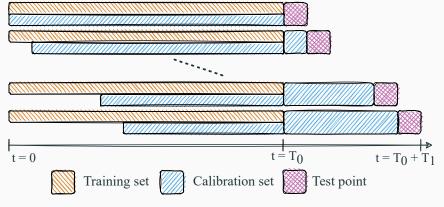
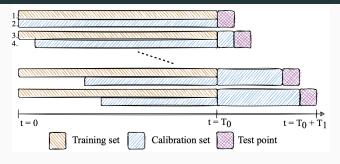
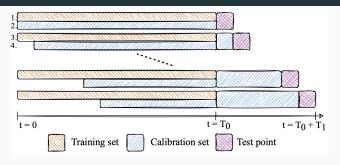


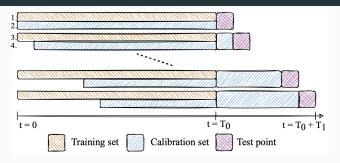
Figure 17: Diagram describing the EnbPl algorithm.



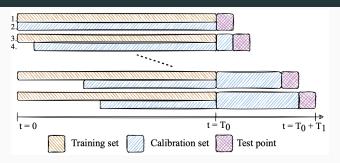
1. Train *B* bootstrap predictors;



- 1. Train B bootstrap predictors;
- Obtain out-of-bootstrap residuals by aggregating the corresponding predictors;



- 1. Train *B* bootstrap predictors;
- Obtain out-of-bootstrap residuals by aggregating the corresponding predictors;
- 3. Do not re-train the *B* bootstrap predictors;



- 1. Train B bootstrap predictors;
- Obtain out-of-bootstrap residuals by aggregating the corresponding predictors;
- 3. Do not re-train the *B* bootstrap predictors;
- 4. Obtain new residual by aggregating all the predictors. Forget the first residuals.

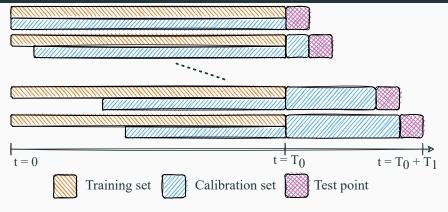


Figure 17: Diagram describing the EnbPl algorithm.

EnbPI (ICML, Xu and Xie, 2021) aggregates with 2 different functions.

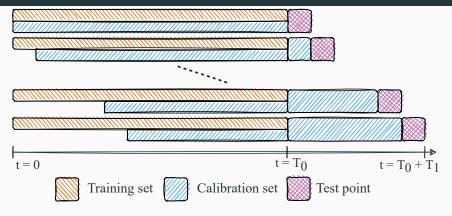


Figure 17: Diagram describing the EnbPI algorithm.

EnbPI (ICML, Xu and Xie, 2021) aggregates with 2 different functions.

⇒ We propose EnbPI V2 with the same aggregation function all along (similar to EnbPI on last ArXiV version from Xu and Xie).

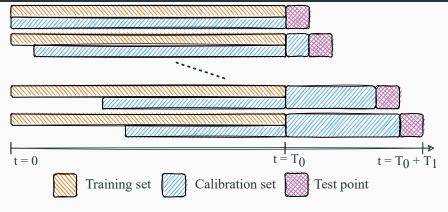


Figure 17: Diagram describing the EnbPl algorithm.

- \hookrightarrow tested on other real time series
- \hookrightarrow compared to offline methods

Details on the simulation set up

Data generation

$$Y_{t} = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^{2} + 10X_{t,4} + 5X_{t,5} + \varepsilon_{t}$$

where the X_t are multivariate uniformly distributed on [0,1] and ε_t are generated from an ARMA(1,1) process.

Data generation

$$Y_{t} = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^{2} + 10X_{t,4} + 5X_{t,5} + \varepsilon_{t}$$

where the X_t are multivariate uniformly distributed on [0,1] and ε_t are generated from an ARMA(1,1) process.

- ⇒ dependence structure in the noise in order to:
 - control the strength of the scores dependence,
 - evaluate the impact of this temporal dependence structure of the results.

Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that ε_t is an ARMA(1,1) process if for any t:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$

with:

- $\theta + \varphi \neq 0$, $|\varphi| < 1$ and $|\theta| < 1$;
- ξ_t is a white noise of variance σ^2 , called the **innovation**.

Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that ε_t is an ARMA(1,1) process if for any t:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$

with:

- $\theta + \varphi \neq 0$, $|\varphi| < 1$ and $|\theta| < 1$;
- ξ_t is a white noise of variance σ^2 , called the **innovation**.
- The higher φ and θ , the stronger the dependence.
- The asymptotic variance of this process is:

$$\operatorname{Var}(\varepsilon_t) = \sigma^2 \frac{1 - 2\varphi\theta + \theta^2}{1 - \varphi^2}.$$

- If $\theta = 0$, only the auto-regressive part, it is an AR(1).
- If $\varphi = 0$, only the moving-average part, it is an MA(1).

Simulation settings

- φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance $Var(\varepsilon_t)$ constant to 1 or 10.
- We use random forest as regressor.

Simulation settings

- φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance $Var(\varepsilon_t)$ constant to 1 or 10.
- We use random forest as regressor.

For each setting:

- 300 points, the last 100 kept for prediction and evaluation,
- 500 repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

Simulation settings

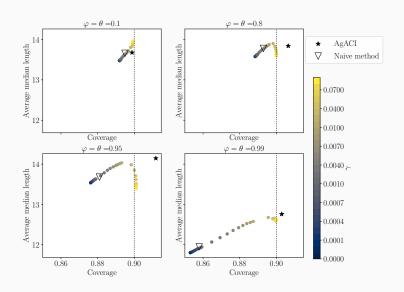
- φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance $Var(\varepsilon_t)$ constant to 1 or 10.
- We use random forest as regressor.

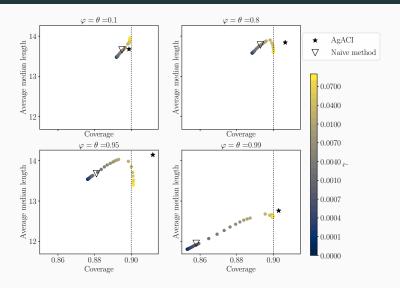
For each setting:

- 300 points, the last 100 kept for prediction and evaluation,
- 500 repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

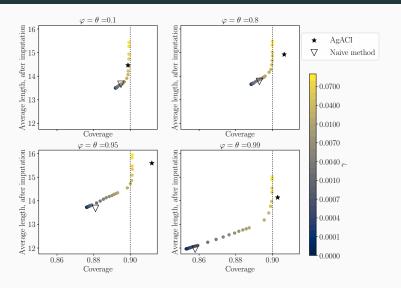
We present the results in the ARMA(1,1) case, but we also have them for AR(1) and MA(1) processes.

Additional results on the synthetic data sets





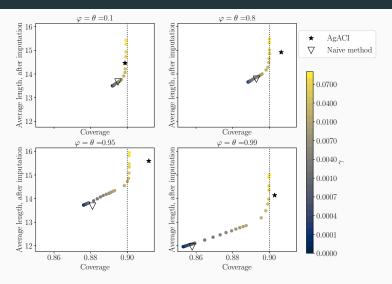
 \Rightarrow The more the dependence, the more sensitive to γ is ACI.



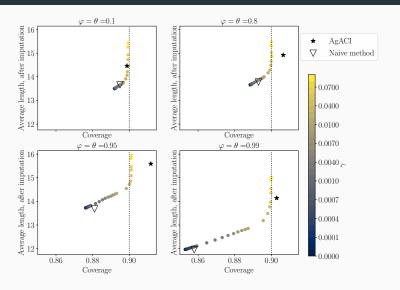
 \Rightarrow The more the dependence, the more sensitive to γ is ACI.



Naive method (∇): smallest among valid ones in the past

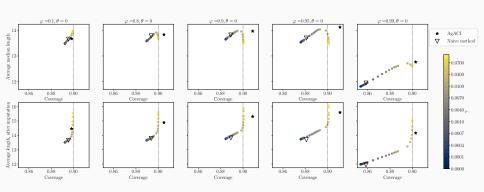


Naive method (\triangledown): smallest among valid ones in the past \Rightarrow accumulates error of the different ACI's versions.

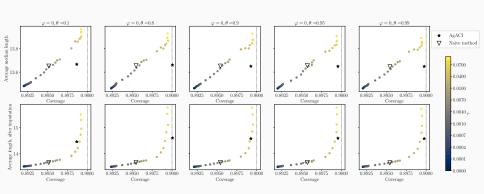


AgACI (★): encouraging preliminary results.

Empirical evaluation of ACI sensitivity to γ and adaptive choice, $\mathsf{AR}(\mathbf{1})$



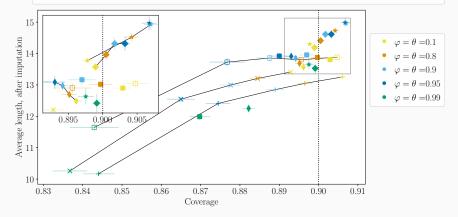
Empirical evaluation of ACI sensitivity to γ and adaptive choice, MA(1)



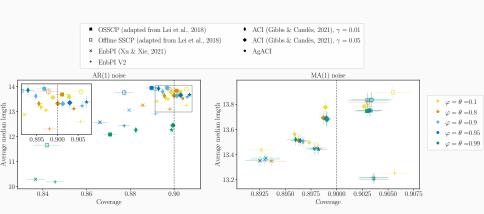
Results: impact of the temporal dependence, ARMA(1), variance 10, average length after imputation

- OSSCP (adapted from Lei et al., 2018)
- $\hfill\Box$ Offline SSCP (adapted from Lei et al., 2018)
- EnbPI (Xu & Xie, 2021)
- + EnbPI V2

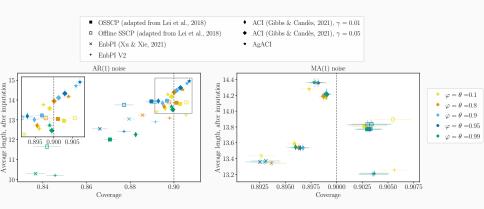
- ACI (Gibbs & Candès, 2021), $\gamma = 0.01$
- $\bullet~$ ACI (Gibbs & Candès, 2021), $\gamma=0.05$
- AgACI



Results: impact of the temporal dependence, $\mathsf{AR}(1)$ and $\mathsf{MA}(1)$, variance 10



Results: impact of the temporal dependence, AR(1) and MA(1), variance 10, average length after imputation



Additional results on the French electricity spot prices

Forecasting French electricity Spot prices with confidence: results

• Target coverage: 90%

• Empirical coverage: 91.68%

• Median length: 22.76€/MWh

Performance on predicted French electricity Spot price: visualisation of a day

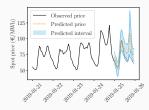


Figure 18: OSSCP

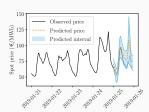


Figure 20: ACI with $\gamma = 0.01$

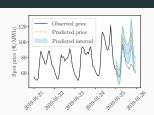


Figure 19: EnbPl V2

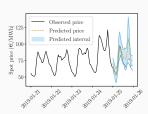


Figure 21: ACI with $\gamma = 0.05$