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École

Polytechnique

Paris - France

Julie Josse

PreMeDICaL

INRIA

Montpellier - France

Yaniv Romano

Technion - Israel Institute

of Technology

Haifa - Israel



Introduction to missing values

Quantifying predictive uncertainty with missing values

Conclusion



TraumaBase®: decision support for trauma patients

• 30 hospitals

• More than 30 000 trauma patients

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of blood platelets upon arrival at hospital, given 7 pre-hospital

features.

These covariates are not always observed.
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Missing values: ubiquitous in data science practice

Data:
(
X (k),Y (k)

)n
k=1

∈
(
Rd ×R

)n
Y X1 X2 X3 X4 X5 X6

8.26 0.72 0.18 0.55 0.05 0.73 0.50

19.41 0.60 0.58 NA NA NA 0.40
19.75 0.54 0.43 0.96 0.77 0.06 0.66

7.32 NA 0.19 NA 0.02 0.83 0.04
13.55 0.65 0.69 0.50 0.15 NA 0.87
20.75 0.43 0.74 0.61 0.72 0.52 0.35

9.26 0.89 NA 0.84 0.01 0.73 NA

9.68 0.963 0.45 0.65 0.04 0.06 NA

If each entry has a probability 0.01 of being missing:

d = 6 → ≈ 94% of rows kept

d = 300 → ≈ 5% of rows kept

One of the ironies of Big Data is that missing data play an ever more

significant role.1

1Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B 3 / 32



Handling missing values depends on pattern and mechanism

• (X ,Y ) ∈ Rd ×R random variables.

• M ∈ {0, 1}d is defined as Mj = 1 ⇔ Xj is missing.

M is called the mask or the missing pattern.

Example

We observe (−1, NA, NA). Then m = (0, 1, 1) and Xobs(m) = (−1).

There are 2d patterns (statistical and computational challenges).

• Three mechanisms2 can generate missing values.

↪→ Missing Completely At Random (MCAR): P(M = m|X ) = P(M = m)

for all m ∈ {0, 1}d . M ⊥⊥ X , missingness does not depend on the variables.

2Rubin (1976), Inference and missing data, Biometrika
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Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

data:

ϕ
(
X (k),M(k)

)
︸ ︷︷ ︸

imputed X (k)

,Y (k)


n

k=1

.

↪→ we consider an impute-then-regress pipeline in this work.

✓ Le Morvan et al. (2021)3 show that for any deterministic imputation and

universal learner this procedure is Bayes-consistent.

✗ Ayme et al. (2022)4 show that even for very simple distributions (linear

model, Gaussian noise), this rate of convergence may suffer from curse of

dimensionality.
3
Le Morvan, Josse, Scornet & Varoquaux (2021), What’s a good imputation to predict with missing values?, NeurIPS

4
Ayme, Boyer, Dieuleveut & Scornet (2022), Near-optimal rate of consistency for linear models with missing values, ICML
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Predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1− α, i.e. build the smallest Cα such that:

1. Marginal Validity (MV)

P
{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)}
≥ 1− α. (MV)

2. Mask-Conditional-Validity (MCV)

∀m ∈ {0, 1}d : P
{
Y (n+1) ∈ Cα

(
X (n+1),m

)
|M(n+1) = m

}
≥ 1−α. (MCV)
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Conformalized Quantile Regression (CQR)4: toy example

0 1 2 3 4 5
X

−4

−2

0

2

Y

Train Cal Test

1
4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4: training step

0 2 4
X

−4

−2

0

2

Y

1

▶ Learn (or get) Q̂R lower and

Q̂Rupper

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4: calibration step

+

+

+ ++
++

+

-
--

-

++

- -

▶ Predict with Q̂R lower and

Q̂Rupper

▶ Get the scores

S =
{
S (k)

}
Cal

∪ {+∞}
▶ Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ S (k) := max
{
Q̂R lower

(
X (k)

)
− Y (k),Y (k) − Q̂Rupper

(
X (k)

)}

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4: prediction step

0 2 4
X

−4

−2

0

2

Y

1

▶ Predict with Q̂R lower and

Q̂Rupper

▶ Build

Ĉα(x) = [Q̂R lower(x)− q1−α (S); Q̂Rupper(x) + q1−α (S)]

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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CQR: theoretical guarantees

CQR enjoys finite sample guarantees proved in Romano et al. (2019), as a

particular case of Conformal Prediction (CP).

Theorem

Suppose
(
X (k),Y (k)

)n+1

k=1
are exchangeable (or i.i.d.). CQR applied on(

X (k),Y (k)
)n
k=1

outputs Ĉα (·) such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (k)

}
k∈Cal

are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α+

1

#Cal+ 1
.

✓Distribution-free, only requires exchangeability

✓Any quantile regression algorithm (neural nets, random forest...)

✓Finite sample

✗ Marginal coverage: P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
������|X (n+1) = x

}
≥ 1− α
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CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma (Zaffran et al. (2023a))

Assume
(
X (k),M(k),Y (k)

)n
k=1

are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation function5 ϕ:(
ϕ
(
X (k),M(k)

)
,Y (k)

)n
k=1

are exchangeable.

⇒ CQR, and Conformal Prediction, applied on an imputed data set still enjoys

marginal guarantees6:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)}
≥ 1− α.

5Even if the imputation is not accurate, the guarantee will hold.
6The upper bound also holds under continuously distributed scores.
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CQR is marginally valid on imputed data sets

Y = βTX + ε,

β = (1, 2,−1)T , ε ⊥⊥ X , X and ε Gaussian, 20% uniform MCAR missing values.

Mask-Conditional-Validity: ✗✓

Warning: the predictive intervals cover properly marginally, but suffer from high

disparities depending on the missing patterns.
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Missing values induce heteroskedasticity

Gaussian linear model

• Y = βTX + ε, ε ∼ N (0, σ2
ε) ⊥⊥ (X ,M), β ∈ Rd .

• for all m ∈ {0, 1}d , there exist µm and Σm such that

X |(M = m) ∼ N (µm,Σm).

↪→ oracle intervals: smallest predictive interval when the distribution of Y |(X ,M)

is known

Proposition (Oracle int. under Gaussian lin. mod., Zaffran et al. (2023a))

L∗
α(m) = 2× q

N (0,1)
1−α/2 ×

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε .

• Even with an homoskedastic noise, missingness generates heteroskedasticity

• The uncertainty increases when missing values are associated with

larger regression coefficients (i.e. the most predictive variables)
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Goals reminder: achieve MCV!

Goal: predict Y (n+1) with confidence 1− α, i.e. build the smallest Cα such that:

1. Marginal Validity (MV) ✓

P
{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)}
≥ 1− α. (MV)

2. Mask-Conditional-Validity (MCV) ✗

∀m ∈ {0, 1}d : P
{
Y (n+1) ∈ Cα

(
X (n+1),m

)
|M(n+1) = m

}
≥ 1−α. (MCV)
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Conformalization step is independent of the important variable: the mask!

Observation: the α-correction term is computed

among all the data points, regardless of their mask!
+

+

+ ++
++

+

-
--

-

++

- -

Warning: 2d possible masks

⇒ Splitting the calibration set by mask (Mondrian type) is infeasible (lack of data)!

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 6 0 1

Test point

-1 -10 6 1

Calibration set used

Initial calibration set

3 1

Test point

0 1

Calibration set used
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Missing Data Augmentation (MDA) of the calibration set

Idea: for each test point, modify the calibration points to mimic the test mask

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

5

0 1

Calibration set used
Initial calibration set

Algorithms: MDA with Exact masking or with Nested masking.
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CP-MDA with Exact masking

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

0 1

Calibration set used Initial calibration set

︸ ︷︷ ︸
#CalM

(test)
observations
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CQR-MDA with exact masking in words

1. Split the training set into a proper training set

and calibration set

2. Train the imputation function on the proper training set

3. Impute the proper training set

4. Train the quantile regressors on the imputed proper

training set

5. For a test point
(
X (n+1),M(n+1)

)
: 3 1

5.1 For each j ∈ J1, dK s.t. M
(n+1)
j = 1, set M̃

(k)
j = 1

for k in Cal s.t. M(k) ⊂ M(n+1)

-1 1

4 2

0 1

5.2 Impute the new calibration set

5.3 Compute the calibration correction, i.e. q1−α(S)
5.4 Impute the test point

5.5 Predict with the quantile regressors and the correction previously obtained,

q1−α(S) 16 / 32



MDA-Exact achieves Mask-Conditional-Validity (MCV)

Theorem (CP-MDA-Exact achieves MCV, Zaffran et al. (2023a))

If: i) the data is exchangeable, ii) M ⊥⊥ X , iii) (Y ⊥⊥ M)|X , then for almost all

imputation function CP-MDA-Exact is such that for any m ∈ {0, 1}d :

P
(
Y ∈ Ĉα (X ,m) |M = m

)
≥ 1− α,

and if additionally the scores are almost surely distinct:

P
(
Y ∈ Ĉα (X ,m) |M = m

)
≤ 1− α+

1

#Calm + 1
.
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What if we kept all observations?

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

5

0 1

Calibration set used
Initial calibration set
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Idea: modify the test point accordingly

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

5

0 1

Calibration set used

Initial calibration set 3 1

3 1

3

3 1

and

Temporary test points

⇝ similar motivation than Barber et al. (2021)7 and Gupta et al. (2022)8.

7Predictive inference with the jackknife+, The Annals of Statistics
8Nested conformal prediction and quantile out-of-bag ensemble methods, Pattern Recognition

19 / 32



CQR-MDA with nested masking in words

5. For a test point
(
X (n+1),M(n+1)

)
: 3 1

5.1 Set M̃(k) = max(M(k),M(n+1)) for k

in the calibration set

-1 1

4 2

5

0 1

5.2 Impute the new calibration set

5.3 For each augmented calibration point k :

5.3.1 Get its score S (k)

5.3.2

Impute-then-predict on the augmented test point

(X (n+1), M̃(k)), giving: Q̂Rα/2(X̃
(n+1),k) and

Q̂R1−α/2(X̃
(n+1),k)

3 1

3 1

3

3 1

5.3.3 Compute the corrected prediction interval:

[Q̂Rα/2(X̃
(n+1),k)− S (k); Q̂R1−α/2(X̃

(n+1),k) + S (k)] :=
[
Z

(k)
lower;Z

(k)
upper

]
5.4 Compute the quantiles qα({Z (k)

lower}k∈Cal) and q1−α({Z (k)
upper}k∈Cal)

5.5 Predict [qα({Z (k)
lower}k∈Cal); q1−α({Z (k)

upper}k∈Cal)]
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MDA-Nested is Marginally Valid (MV)

Theorem (CP-MDA-Nested marginal validity, Zaffran et al. (2023b))

If the data is exchangeable, then for almost all imputation function

CP-MDA-Nested is such that:

P
(
Y ∈ Ĉα (X ,M)

)
≥ 1− 2α.

✓ Any missing mechanism (no need to assume M ⊥⊥ X )

✓ Does not require (Y ⊥⊥ M) |X
✗ Marginal guarantee

Proof element: based on Jackknife+ ideas (Barber et al., 2021).

Leaving-out the k-th data point to predict on the l-th data point

↔
Apply the mask of the k-th data point to the l-th data point on which you predict
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MDA-Nested (nearly) achieves Mask-Conditional-Validity (MCV)

Stochastic domination of the quantiles (SDQ)

Let (m̊, m̆) ∈
(
{0, 1}d

)2
. If m̊ ⊂ m̆ then for any δ ∈ [0, 0.5]:

q
Y |(Xobs(m̊),M=m̊)

1−δ/2 ≤ q
Y |(Xobs(m̆),M=m̆)

1−δ/2 , and q
Y |(Xobs(m̊),M=m̊)

δ/2 ≥ q
Y |(Xobs(m̆),M=m̆)

δ/2 .

⇝ predictive uncertainty increases with bigger masks.

Theorem (CP-MDA-Nested (nearly) achieves MCV, Zaffran et al. (2023a))

If i) the data is exchangeable, ii) M ⊥⊥ X , iii) (Y ⊥⊥ M)|X , iv) SDQ holds, then

for almost all imputation function “CP-MDA-Nested” is s.t. for any m ∈ {0, 1}d :

P
(
Y ∈ Ĉα (X ,m) |M = m

)
≥ 1− α.

Change on MDA-Nested: outputs any

[qα({Z (k)
lower}k∈Calm̆); q1−α({Z (k)

upper}k∈Calm̆)], where m̆ is randomly9 selected such

that m ⊂ m̆.
9The randomness may depend on #Calm̆.
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Summary of CP-MDA

Test point

Initial calibration set

CP-MDA with exact masking:
calibration set

CP-MDA with nested masking:-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

-1 1

4 2

5

0 1

-1 1

4 2

0 1

and

3 1

3 1

3

3 1

calibration set temporary test points
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MDA achieves Mask-Conditional-Validity (MCV)

Y = βTX + ε,

β = (1, 2,−1)T , ε ⊥⊥ X , X and ε Gaussian, 20% uniform MCAR missing values.
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MDA achieves (MCV) in an informative way

Y = βTX + ε,

β = (1, 2,−1)T , ε ⊥⊥ X , X and ε Gaussian, 20% uniform MCAR missing values.
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Some settings

• Imputation by iterative ridge (∼ conditional expectation)

• Concatenate the mask in the features

• Neural network, fitted to minimize the pinball loss

• (Semi)-synthetic experiments:

◦ Uniform MCAR missing values, with probability 20%

◦ 100 repetitions
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Synthetic experiments (Gaussian linear model, d = 10)
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Before more experiments, visualisation
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Semi-synthetic experiments

0.7 0.8 0.9
Average coverage

35

40

45

50

55

60
A
ve
ra
ge

le
n
gt
h

concrete (d = 8, l = 8)

QR
CQR
CQR-MDA-Exact
CQR-MDA-Nested

Marginal
Lowest
Highest

1
29 / 32



Real data experiment: TraumaBase®, critical care medicine
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Take-home-messages

• CP marginal guarantees hold on the imputed data set.

• Missingness introduces additional heteroskedasticity, creating a need for

quantile regression based methods.

• CQR fails to attain coverage conditional on the missing pattern.

• Missing data augmentation is the first method to output predictive

intervals with missing values.

• Missing data augmentation attains conditional coverage with respect to the

missing pattern (in MCAR setting).

• Extension: consistency of universal quantile learner when chained with almost

any imputation function.
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Perspectives/connection to other works

• Investigate alternative methods relying on trade-offs between MDA-Exact and

MDA-Nested

• Relationship with Gibbs et al. (2023)10

✓ Beyond MCAR

✗ Upper bound in 2d

(n+1)PM (m) : high value for less probable masks

↪→ MCV are non-overlapping groups: boils down to splitting the calibration set!

• Quantify the impact of the imputation’s choice on Quantile Regression quality

in finite sample

10
Conformal Prediction With Conditional Guarantees
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Thank you! Questions? :)
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Appendix



Towards asymptotic individualized coverage



Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.

Denote g∗
β,Φ ∈ argmin

g :Rd→R
E [ρβ(Y − g ◦ Φ(X ,M))] := Rβ,ϕ(g).

Comparison with: argmin
f

E [ρβ(Y − f (X ,M))] (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all C∞ imputation function Φ, the function g∗
β,Φ ◦ Φ is Bayes optimal

for the pinball-risk of level β.

↪→ any universally consistent algorithm for quantile regression trained on the

data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).



Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all C∞ imputation function Φ, if

FY |(Xobs(M),M) is continuous, a universally consistent quantile regressor trained on

the imputed data set yields asymptotic conditional coverage.

↪→ P(Y ∈ Ĉα(x)|X = x ,M = m) ≥ 1− α for any m ∈ M and any x ∈ Rd ,

asymptotically with a super quantile learner.



d = 3



Data generation

(X ,Y ) ∈ R3 ×R.
Y = βTX + ε

with ε ∼ N (0, 1), β = (1, 2,−1)T and

(X1,X2,X3) ∼ N


 1

1

1

 ,

 1 0.8 0.8

0.8 1 0.8

0.8 0.8 1


.

All components of X each have a probability 0.2 of being missing, Completely At

Random.



Simulation settings

• Method: CQR

• Basemodel: neural network

• 200 repetitions

◦ train size of 250 points

◦ calibration size of 250 points

◦ test size of 2000 points



d = 10, with missing data augmentation



Data generation

(X ,Y ) ∈ R10 ×R.
Y = βTX + ε

with ε ∼ N (0, 1), β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3)T and

(X1, · · · ,X10) ∼ N
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All components of X each have a probability 0.2 of being missing, Completely At

Random.



Simulation settings: varying training size

• Method: CQR

• Basemodel: neural network

• Imputation: iterative (≈ conditional expectation)

• Mask as features: yes

• 100 repetitions

◦ train size varies

◦ calibration size of 1000 points

◦ test size of 2000 points



Results on the worst group
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Results on the best group
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Synthetic experiments, 40% of missing values (Gaussian linear model, d = 10)



Simulation settings: beyond MCAR

• 6 variables (denote this set Xmissing) out of 10 can be missing (the 4 others
form the set Xobserved)

→ Xmissing = {X1,X2,X3,X5,X8,X9};
• Proportion of missing entries fixed to be 20%.



MAR missingness

• Probability of the variables in Xmissing to be missing given by a logistic model

of arguments Xobserved.

• This setting is declined 5 times, with different weights for the logistic model.
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MNAR self masked missingness

• Probability of each variable in Xmissing to be missing given by a logistic model

of argument the same variable of Xmissing.

• This setting is declined 5 times, with different weights for the logistic model.
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MNAR quantile censorship missingness

• Missing values are introduced at random in each q-quantile of the variables in

Xmissing.

• 6 different settings: q varies between 0.5, 0.75, 0.8, 0.85, 0.9 and 0.95.

4

5

6

7

A
ve
ra
ge

le
n
gt
h

Censorship at quantile level 0.5 Censorship at quantile level 0.75 Censorship at quantile level 0.8

0.8 0.9
Average coverage

4

5

6

7

A
ve
ra
ge

le
n
gt
h

Censorship at quantile level 0.85

0.8 0.9
Average coverage

Censorship at quantile level 0.9

0.8 0.9
Average coverage

Censorship at quantile level 0.95

QR CQR CQR-MDA-Exact CQR-MDA-Nested Marginal Lowest Highest

1



Semi-synthetic experiments



Bio data set
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Meps 19 data set
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Bike data set
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TraumaBase®



Data set description i

• Age: the age of the patient (no missing values);

• Lactate: the conjugate base of lactic acid, upon arrival at the hospital

(17.66% missing values);

• Delta hemo: the difference between the hemoglobin upon arrival at hospital

and the one in the ambulance (23.82% missing values);

• VE: binary variable indicating if a Volume Expander was applied in the

ambulance. A volume expander is a type of intravenous therapy that has the

function of providing volume for the circulatory system (2.46% missing

values);

• RBC: a binary index which indicates whether the transfusion of Red Blood

Cells Concentrates is performed (0.37% missing values);



Data set description ii

• SI: the shock index. It indicates the level of occult shock based on heart rate

(HR) and systolic blood pressure (SBP), that is SI = HR
SBP , upon arrival at

hospital (2.09% missing values);

• HR: the heart rate measured upon arrival of hospital (1.62% missing values).
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