Conformal Prediction with Missing Values

Margaux Zaffran Emmanuel Candès' group meeting August 17, 2023

Who am I?

- 3rd (last) year statistics PhD Student, @ INRIA & École Polytechnique (Paris)
- Funded by Électricité de France (French main electricity producer and supplier)
- My advisors:

Aymeric Dieuleveut École Polytechnique

Olivier Féron EDF R&D FiME

Yannig Goude EDF R&D LMO

nce de la la

Julie Josse PreMeDICaL INRIA

- Research interests:
 - $\circ~$ Distribution-free uncertainty quantification
 - Time series data
 - $\circ~$ Missing values
 - Societal applications (energy, environmental and medical domains)

Conformal Prediction with Missing Covariates

Aymeric Dieuleveut École Polytechnique Paris - France

Yaniv Romano Technion - Israel Institute of Technology *Haifa - Israel*

Quantifying predictive uncertainty with missing values

- 30 hospitals
- More than 30 000 trauma patients
- 4 000 new patients per year
- 250 continuous and categorical variables
 - $\hookrightarrow \mathsf{Many} \text{ useful statistical tasks}$

Predict the level of blood platelets upon arrival at hospital, given 7 pre-hospital features.

These covariates are not always observed.

Missing values: ubiquitous in data science practice

Data:
$$(X^{(k)}, Y^{(k)})_{k=1}^n \in (\mathbb{R}^d \times \mathbb{R})^n$$

Y	X_1	X_2	X_3	X_4	X_5	X_6
8.26	0.72	0.18	0.55	0.05	0.73	0.50
-19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
-7.32	NA	0.19	NA	0.02	0.83	0.04
-13.55-	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

If each entry has a probability 0.01 of being missing:

 $d=6
ightarrow \approx 94\%$ of rows kept

 $d=300
ightarrow\,pprox\,5\%$ of rows kept

One of the **ironies of Big Data** is that missing data play an ever more significant role.¹

¹Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables.
- *M* ∈ {0,1}^d is defined as *M_j* = 1 ⇔ *X_j* is missing.
 M is called the mask or the missing pattern.

Example

We observe (-1, NA, NA). Then m = (0, 1, 1) and $X_{obs(m)} = (-1)$.

There are 2^d patterns (statistical and computational challenges).

• Three mechanisms² can generate missing values.

 \hookrightarrow Missing Completely At Random (MCAR): $\mathbb{P}(M = m | X) = \mathbb{P}(M = m)$ for all $m \in \{0, 1\}^d$. $M \perp X$, missingness does not depend on the variables.

²Rubin (1976), Inference and missing data, Biometrika

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

- 1. Replace NA using an imputation function ϕ (e.g. the mean).
- 2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

data:
$$\left\{ \underbrace{\phi\left(X^{(k)}, M^{(k)}\right)}_{\text{imputed } X^{(k)}}, Y^{(k)} \right\}_{k=1}^{k}$$

 \hookrightarrow we consider an impute-then-regress pipeline in this work.

- ✓ Le Morvan et al. $(2021)^3$ show that for any deterministic imputation and universal learner this procedure is Bayes-consistent.
- X Ayme et al. (2022)⁴ show that even for very simple distributions (linear model, Gaussian noise), this rate of convergence may suffer from curse of dimensionality.

³Le Morvan, Josse, Scornet & Varoquaux (2021), What's a good imputation to predict with missing values?, NeurIPS ⁴Ayme, Boyer, Dieuleveut & Scornet (2022), Near-optimal rate of consistency for linear models with missing values, ICML

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression Impute-then-Regress+Conformalization Missing Data Augmentation Experimental results

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with **confidence** $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

2. Mask-Conditional-Validity (MCV)

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha.$$
 (MCV)

Ilustrations @theo.remlinger

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression

Impute-then-Regress+Conformalization

Missing Data Augmentation

Experimental results

Conformalized Quantile Regression (CQR)⁴: toy example

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

CQR enjoys finite sample guarantees proved in Romano et al. (2019), as a particular case of Conformal Prediction (CP).

Theorem

$$\begin{split} & \text{Suppose } \left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n+1} \text{ are exchangeable (or i.i.d.). CQR applied on} \\ & \left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n} \text{ outputs } \widehat{C}_{\alpha}\left(\cdot\right) \text{ such that:} \\ & \mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1 - \alpha. \\ & \text{Additionally, if the scores } \left\{S^{(k)}\right\}_{k \in \text{Cal}} \text{ are a.s. distinct:} \\ & \mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\text{Cal} + 1}. \end{split}$$

✓ Distribution-free, only requires exchangeability
 ✓ Any quantile regression algorithm (neural nets, random forest...)
 ✓ Finite sample

X Marginal coverage:
$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$$
8/3

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression

 ${\sf Impute-then-Regress+Conformalization}$

Missing Data Augmentation

Experimental results

To apply conformal prediction we need exchangeable data.

Lemma (Zaffran et al. (2023a))

Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$ are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation function⁵ ϕ : $(\phi(X^{(k)}, M^{(k)}), Y^{(k)})_{k=1}^{n}$ are exchangeable.

 \Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees 6 :

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)\right\}\geq 1-\alpha.$$

⁵Even if the imputation is not accurate, the guarantee will hold.

⁶The upper bound also holds under continuously distributed scores.

CQR is marginally valid on imputed data sets

$$Y = \beta^T X + \varepsilon,$$

 $\beta = (1, 2, -1)^T$, $\varepsilon \perp X$, X and ε Gaussian, 20% uniform MCAR missing values.

Warning: the predictive intervals cover properly marginally, but suffer from high disparities depending on the missing patterns.

Missing values induce heteroskedasticity

Gaussian linear model

•
$$Y = \beta^T X + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \perp (X, M)$, $\beta \in \mathbb{R}^d$.

• for all
$$m \in \{0, 1\}^d$$
, there exist μ^m and Σ^m such that $X|(M = m) \sim \mathcal{N}(\mu^m, \Sigma^m).$

 \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X, M) is known

Proposition (Oracle int. under Gaussian lin. mod., Zaffran et al. (2023a))

$$\mathcal{L}^*_{\alpha}(\textbf{\textit{m}}) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\mathrm{mis}(\textbf{\textit{m}})}^{\mathcal{T}} \Sigma_{\mathrm{mis}|\mathrm{obs}}^{\textbf{\textit{m}}} \beta_{\mathrm{mis}(\textbf{\textit{m}})} + \sigma_{\varepsilon}^2}$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)

Goals reminder: achieve MCV!

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV) 🗸

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

2. Mask-Conditional-Validity (MCV) X

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha.$$
 (MCV)

Ilustrations @theo.remlinger

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed \succ among all the data points, regardless of their mask!

Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set by mask *(Mondrian type)* is infeasible (lack of data)!

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression

Impute-then-Regress+Conformalization

Missing Data Augmentation

Experimental results

Missing Data Augmentation (MDA) of the calibration set

Idea: for each test point, modify the calibration points to mimic the test mask

Test point

Algorithms: MDA with Exact masking or with Nested masking.

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression

Impute-then-Regress+Conformalization

Missing Data Augmentation

MDA with Exact masking

MDA with Nested masking

Experimental results

CQR-MDA with exact masking in words

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
 - 5.2 Impute the new calibration set
 - 5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(S)$
 - 5.4 Impute the test point
 - 5.5 Predict with the quantile regressors and the correction previously obtained, $q_{1-\alpha}(S)$

Theorem (CP-MDA-Exact achieves MCV, Zaffran et al. (2023a))

If: i) the data is exchangeable, ii) $M \perp X$, iii) $(Y \perp M)|X$, then for almost all imputation function CP-MDA-Exact is such that for any $m \in \{0, 1\}^d$:

$$\mathbb{P}\left(Y\in\widehat{\mathcal{C}}_{\alpha}\left(X,m
ight)|M=m
ight)\geq1-lpha,$$

and if additionally the scores are almost surely distinct:

$$\mathbb{P}\left(Y\in\widehat{\mathcal{C}}_{\alpha}\left(X,m\right)|M=m\right)\leq 1-\alpha+\frac{1}{\#\mathrm{Cal}^{\mathrm{m}}+1}$$

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression

Impute-then-Regress+Conformalization

Missing Data Augmentation

MDA with Exact masking

MDA with Nested masking

Experimental results

 \sim similar motivation than Barber et al. (2021)⁷ and Gupta et al. (2022)⁸.

⁷*Predictive inference with the jackknife+*, The Annals of Statistics

⁸Nested conformal prediction and quantile out-of-bag ensemble methods, Pattern Recognition

CQR-MDA with nested masking in words

- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 5.1 Set $\tilde{M}^{(k)} = \max(M^{(k)}, M^{(n+1)})$ for k in the calibration set
 - 5.2 Impute the new calibration set
 - 5.3 For each augmented calibration point k:5.3.1 Get its score S^(k)

Impute-then-predict on the augmented test point 5.3.2 $(X^{(n+1)}, \tilde{M}^{(k)})$, giving: $\widehat{QR}_{\alpha/2}(\tilde{X}^{(n+1),k})$ and $\widehat{QR}_{1-\alpha/2}(\tilde{X}^{(n+1),k})$

5.3.3 Compute the corrected prediction interval: $[\widehat{QR}_{\alpha/2}(\tilde{X}^{(n+1),k}) - S^{(k)}; \widehat{QR}_{1-\alpha/2}(\tilde{X}^{(n+1),k}) + S^{(k)}] := [Z_{\text{lower}}^{(k)}; Z_{\text{upper}}^{(k)}]$ 5.4 Compute the quantiles $q_{\alpha}(\{Z_{\text{lower}}^{(k)}\}_{k \in \text{Cal}})$ and $q_{1-\alpha}(\{Z_{\text{upper}}^{(k)}\}_{k \in \text{Cal}})$ 5.5 Predict $[q_{\alpha}(\{Z_{\text{lower}}^{(k)}\}_{k \in \text{Cal}}); q_{1-\alpha}(\{Z_{\text{upper}}^{(k)}\}_{k \in \text{Cal}})]$

3	NA	NA	1
3	NA	NA	1
3	NA	NA	NA
3	NA	NA	1

Theorem (CP-MDA-Nested marginal validity, Zaffran et al. (2023b))

If the data is exchangeable, then for almost all imputation function CP-MDA-Nested is such that:

$$\mathbb{P}\left(Y\in\widehat{C}_{\alpha}\left(X,M\right)\right)\geq1-2lpha.$$

✓ Any missing mechanism (no need to assume $M \perp X$)

- ✓ Does not require $(Y \perp M) | X$
- × Marginal guarantee

Proof element: based on Jackknife+ ideas (Barber et al., 2021).

Leaving-out the *k*-th data point to predict on the *l*-th data point

 \leftrightarrow

Apply the mask of the k-th data point to the l-th data point on which you predict

MDA-Nested (nearly) achieves Mask-Conditional-Validity (MCV)

Stochastic domination of the quantiles (SDQ)

Let
$$(\mathring{m}, \breve{m}) \in (\{0, 1\}^d)^2$$
. If $\mathring{m} \subset \breve{m}$ then for any $\delta \in [0, 0.5]$:
 $q_{1-\delta/2}^{Y|(X_{\text{obs}(\check{m})}, M=\check{m})} \leq q_{1-\delta/2}^{Y|(X_{\text{obs}(\check{m})}, M=\check{m})}$, and $q_{\delta/2}^{Y|(X_{\text{obs}(\check{m})}, M=\check{m})} \geq q_{\delta/2}^{Y|(X_{\text{obs}(\check{m})}, M=\check{m})}$.

 \rightsquigarrow predictive uncertainty increases with bigger masks.

Theorem (CP-MDA-Nested (nearly) achieves MCV, Zaffran et al. (2023a))

If i) the data is exchangeable, ii) $M \perp X$, iii) $(Y \perp M)|X$, iv) SDQ holds, then for almost all imputation function "CP-MDA-Nested" is s.t. for any $m \in \{0,1\}^d$:

$$\mathbb{P}\left(Y\in\widehat{\mathcal{C}}_{\alpha}\left(X,m\right)|M=m\right)\geq1-\alpha.$$

Change on MDA-Nested: outputs any $[q_{\alpha}(\{Z_{lower}^{(k)}\}_{k\in Cal^{\check{m}}}); q_{1-\alpha}(\{Z_{upper}^{(k)}\}_{k\in Cal^{\check{m}}})]$, where \check{m} is randomly⁹ selected such that $m \subset \check{m}$. ⁹The randomness may depend on $\#Cal^{\check{m}}$.

Summary of CP-MDA

23 / 32
MDA achieves Mask-Conditional-Validity (MCV)

$$Y = \beta^T X + \varepsilon,$$

 $\beta = (1, 2, -1)^T$, $\varepsilon \perp X$, X and ε Gaussian, 20% uniform MCAR missing values.

MDA achieves (MCV) in an informative way

$$Y = \beta^T X + \varepsilon,$$

 $\beta = (1, 2, -1)^T$, $\varepsilon \perp X$, X and ε Gaussian, 20% uniform MCAR missing values.

Introduction to missing values

Quantifying predictive uncertainty with missing values

Conformalized Quantile Regression

Impute-then-Regress+Conformalization

Missing Data Augmentation

Experimental results

Conclusion

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
 - $\circ~$ Uniform MCAR missing values, with probability 20%
 - \circ 100 repetitions

Synthetic experiments (Gaussian linear model, d = 10)

- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$
- $igstarrow : ext{highest coverage, i.e.} \ \max_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

Semi-synthetic experiments

Real data experiment: TraumaBase[®], critical care medicine

Introduction to missing values

Quantifying predictive uncertainty with missing values

Conclusion

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).
- <u>Extension</u>: consistency of universal quantile learner when chained with almost any imputation function.

- Investigate alternative methods relying on trade-offs between MDA-Exact and MDA-Nested
- Relationship with Gibbs et al. (2023)¹⁰
 - ✓ Beyond MCAR
 - **×** Upper bound in $\frac{2^d}{(n+1)\mathbb{P}_M(m)}$: high value for less probable masks
 - $\,\hookrightarrow\,$ MCV are non-overlapping groups: boils down to splitting the calibration set!
- Quantify the impact of the imputation's choice on Quantile Regression quality in finite sample

¹⁰Conformal Prediction With Conditional Guarantees

Thank you! Questions? :)

- Ayme, A., Boyer, C., Dieuleveut, A., and Scornet, E. (2022). Near-optimal rate of consistency for linear models with missing values. *ICML*.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). Predictive inference with the jackknife+. *The Annals of Statistics*, 49(1).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees.
- Gupta, C., Kuchibhotla, A. K., and Ramdas, A. (2022). Nested conformal prediction and quantile out-of-bag ensemble methods. *Pattern Recognition*, 127.
- Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021). What's a good imputation to predict with missing values? *NeurIPS*.
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *NeurIPS*.
- Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3).

- Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2023a). Conformal prediction with missing values. *ICML*.
- Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2023b). Predictive uncertainty quantification with missing values. To be submitted.
- Zhu, Z., Wang, T., and Samworth, R. J. (2019). High-dimensional principal component analysis with heterogeneous missingness. arXiv.

Appendix

Towards asymptotic individualized coverage

Let Φ be an imputation function chosen by the user.

Denote
$$g^*_{\beta,\Phi} \in \underset{g:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[\rho_{\beta}(Y - g \circ \Phi(X, M)) \right] := \mathcal{R}_{\beta,\phi}(g).$$

Comparison with: argmin $\mathbb{E}\left[\rho_{\beta}(Y - f(X, M))\right]$ (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all \mathcal{C}^{∞} imputation function Φ , the function $g^*_{\beta,\Phi} \circ \Phi$ is Bayes optimal for the pinball-risk of level β .

 \hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).

Corollary

For any missing mechanism, for almost all C^{∞} imputation function Φ , if $F_{Y|(X_{obs(M)},M)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.

 $\hookrightarrow \mathbb{P}(Y \in \widehat{C}_{\alpha}(x) | X = x, M = m) \ge 1 - \alpha$ for any $m \in \mathcal{M}$ and any $x \in \mathbb{R}^d$, asymptotically with a super quantile learner.

$$(X, Y) \in \mathbb{R}^3 \times \mathbb{R}.$$

$$Y = \beta^T X + \varepsilon$$

with $\varepsilon \sim \mathcal{N}(0, 1), \ \beta = (1, 2, -1)^T$ and

$$(X_1, X_2, X_3) \sim \mathcal{N}\left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 & 0.8\\0.8 & 1 & 0.8\\0.8 & 0.8 & 1 \end{pmatrix}\right).$$

All components of X each have a probability 0.2 of being missing, Completely At Random.

- Method: CQR
- Basemodel: neural network
- 200 repetitions
 - $\circ\,$ train size of 250 points
 - $\circ\,$ calibration size of 250 points
 - \circ test size of 2000 points

d = 10, with missing data augmentation

$$(X, Y) \in \mathbb{R}^{10} \times \mathbb{R}.$$

$$Y = \beta^{T} X + \varepsilon$$

with $\varepsilon \sim \mathcal{N}(0, 1), \ \beta = (1, 2, -1, 3, -0.5, -1, 0.3, 1.7, 0.4, -0.3)^{T} \text{ and}$

$$(X_{1}, \cdots, X_{10}) \sim \mathcal{N}\left(\begin{pmatrix} 1 \\ \vdots \\ \vdots \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 & \cdots & 0.8 \\ 0.8 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0.8 \\ 0.8 & \cdots & 0.8 & 1 \end{pmatrix}\right).$$

All components of X each have a probability 0.2 of being missing, Completely At Random.

- Method: CQR
- Basemodel: neural network
- Imputation: iterative (pprox conditional expectation)
- Mask as features: yes
- 100 repetitions
 - \circ train size varies
 - $\circ\,$ calibration size of 1000 points
 - \circ test size of 2000 points

Results on the worst group

Results on the best group

6 variables (denote this set X_{missing}) out of 10 can be missing (the 4 others form the set X_{observed})

$$\rightarrow X_{\text{missing}} = \{X_1, X_2, X_3, X_5, X_8, X_9\};$$

• Proportion of missing entries fixed to be 20%.

- Probability of the variables in X_{missing} to be missing given by a logistic model of arguments X_{observed}.
- This setting is declined 5 times, with different weights for the logistic model.

MNAR self masked missingness

- Probability of each variable in X_{missing} to be missing given by a logistic model of argument the same variable of X_{missing}.
- This setting is declined 5 times, with different weights for the logistic model.

MNAR quantile censorship missingness

- Missing values are introduced at random in each q-quantile of the variables in $X_{\rm missing}$.
- 6 different settings: q varies between 0.5, 0.75, 0.8, 0.85, 0.9 and 0.95.

Semi-synthetic experiments

Bio data set

Meps_19 data set

Bike data set

- Age: the age of the patient (no missing values);
- Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66% missing values);
- Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82% missing values);
- VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);
- RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37% missing values);

- SI: the shock index. It indicates the level of occult shock based on heart rate (HR) and systolic blood pressure (SBP), that is SI = ^{HR}/_{SBP}, upon arrival at hospital (2.09% missing values);
- HR: the heart rate measured upon arrival of hospital (1.62% missing values).