Conformal Prediction with Missing Values

Margaux Zaffran Stats Workshop (FAST-BIG)

Aymeric Dieuleveut Ecole Polytechnique Paris - France

Julie Josse INRIA PreMeDICaL Montpellier - France Yaniv Romano Technion - Israel Institute of Technology Haifa - Israel (Way too short) Intro to (Split) Conformal PredictionStandard Split Conformal Prediction for Mean-RegressionImproving Adaptiveness: Conformalized Quantile Regression

Conformal Prediction with Missing Values

Setting

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^{n}$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha,\tag{1}$$

and C_{α} should be as small as possible, in order to be informative. For example: $\alpha = 0.1$ and obtain a 90% coverage interval

- Construction of the predictive intervals should be
 - agnostic to the model
 - agnostic to the data distribution
 - valid in finite samples

(Way too short) Intro to (Split) Conformal Prediction Standard Split Conformal Prediction for Mean-Regression Improving Adaptiveness: Conformalized Quantile Regression

Conformal Prediction with Missing Values

Split Conformal Prediction (SCP)^{1,2,3}: toy example

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

- ▶ Predict with $\hat{\mu}$
- Get the |residuals|, a.k.a. scores $\{S^{(k)}\}_{k \in Cal}$
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

Predict with \$\hu\$
Build \$\hu\$
\$\hu\$<

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

Definition (Exchangeability)

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of [[1, n]] we have:

$$\mathcal{L}\left(\left(X^{(1)}, Y^{(1)}\right), \dots, \left(X^{(n)}, Y^{(n)}\right)\right) \\ = \mathcal{L}\left(\left(X^{(\sigma(1))}, Y^{(\sigma(1))}\right), \dots, \left(X^{(\sigma(n))}, Y^{(\sigma(n))}\right)\right)$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

Examples of exchangeable sequences

- i.i.d. samples
- ${\mbox{ \bullet}}$ The components of ${\mathcal N}$

$$\begin{pmatrix} m \\ \vdots \\ \vdots \\ m \end{pmatrix}, \begin{pmatrix} \sigma^2 & & \\ & \ddots & \gamma^2 & \\ & \gamma^2 & \ddots & \\ & & & & \sigma^2 \end{pmatrix} \end{pmatrix}$$

SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose
$$(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$$
 are exchangeable (or i.i.d.). SCP applied or $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
Additionally, if the scores $\{S^{(k)}\}_{k\in \operatorname{Cal}} \cup \{S_{n+1}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \le 1 - \alpha + \frac{1}{\#\operatorname{Cal} + 1}.$$

- Distribution-free, only requires exchangeability
- Any regression algorithm (neural nets, random forest...)
- Finite sample

X Marginal coverage:
$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$$

(Way too short) Intro to (Split) Conformal Prediction

Standard Split Conformal Prediction for Mean-Regression

Improving Adaptiveness: Conformalized Quantile Regression

Conformal Prediction with Missing Values

Predict with \$\httype{\mu}\$
Build \$\hat{C}_{\alpha}(x)\$: [\$\httype{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\$]

Conformalized Quantile Regression (CQR)⁴

⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

CQR enjoys finite sample guarantees proved in Romano et al. (2019), as a particular case of Split Conformal Prediction (SCP).

Theorem

$$\begin{split} & \text{Suppose } \left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n+1} \text{ are exchangeable (or i.i.d.). CQR applied on} \\ & \left(X^{(k)}, Y^{(k)}\right)_{k=1}^{n} \text{ outputs } \widehat{C}_{\alpha}\left(\cdot\right) \text{ such that:} \\ & \mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1 - \alpha. \\ & \text{Additionally, if the scores } \left\{S^{(k)}\right\}_{k \in \operatorname{Cal}} \cup \left\{S_{n+1}\right\} \text{ are a.s. distinct:} \\ & \mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\operatorname{Cal} + 1}. \end{split}$$

- Distribution-free, only requires exchangeability
- Any quantile regression algorithm (neural nets, random forest...)
- Finite sample

× Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$ conditional 7/17

(Way too short) Intro to (Split) Conformal Prediction

Conformal Prediction with Missing Values

Missing values are ubiquitous and challenging

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

				VIASK IVI =		
Y	X_1	X_2	X_3	$(M_1$	M_2	$M_3)$
22.42	0.55	0.67	0.03	0	0	0
8.26	0.72	0.18	0.55	0	0	0
19.41	0.60	0.58	NA	0	0	1
19.75	0.54	0.43	0.96	0	0	0
7.32	NA	0.19	NA	1	0	1
13.55	0.65	0.69	0.50	0	0	0
20.75	NA	NA	0.61	1	1	0
9.26	0.89	NA	0.84	0	1	0
9.68	0.963	0.45	0.65	0	0	0

$\hookrightarrow 2^d$ potential masks.

- $\hookrightarrow M$ can depend on X or Y (depending on the missing mechanism).
- \Rightarrow Statistical and computational challenges.

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\left\{ \begin{array}{c} \phi(X^{(k)}, M^{(k)}), Y^{(k)} \\ \downarrow^{(k) = \text{imputed } X^{(k)}} \end{array} \right\}_{k=1}^{n}.$

 \hookrightarrow we consider an impute-then-regress pipeline in this work.

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha. \quad (\mathsf{MCV})$$

10 / 17

CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma

Assume
$$(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$$
 are *i.i.d.* (or exchangeable).

Then, for any missing mechanism, for almost all imputation function⁵ ϕ : $(\phi(X^{(k)}, M^{(k)}), Y^{(k)})_{k=1}^{n}$ are exchangeable.

 \Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees⁶:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)\right\}\geq 1-\alpha.$$

⁵Even if the imputation is not accurate, the guarantee will hold.

⁶The upper bound also holds under continuously distributed scores.

CQR is marginally valid on imputed data sets

$$Y=eta^{ op}X+arepsilon,\ eta=(1,2,-1)^{ op},\ X$$
 and $arepsilon$ Gaussian.

• The predictive uncertainty strongly depends on the mask

	$Imputation{+}CQR$	
(MV)	\checkmark	
(MCV)	×	

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed \succ among all the data points, regardless of their mask!

Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set by mask is infeasible (lack of data)!

Missing Data Augmentation (MDA)

Idea: for each test point, modify the calibration points to mimic the test mask

Test point

Algorithms: MDA with Exact masking or with Nested masking.

Theorem (Informal)

If $M \perp (X, Y)$, for almost all imputation function, CP-MDA reaches (MCV).

	$Imputation{+}CQR$	CQR-MDA
(MV)	\checkmark	✓
(MCV)	×	\checkmark

 $15 \, / \, 17$

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).
- Extensions:
 - Synthetic experiments in higher dimension
 - Semi-synthetic experiments
 - $\circ~$ Synthetic experiments beyond MCAR (MAR and MNAR)
 - Real data experiments (TraumaBase)
 - CP-MDA-Nested (link to CP-MDA-Nested), an algorithm which does not discard any calibration point
 - \circ Consistency of universal quantile learner when chained with almost any

Questions? :)

Thanks for listening and feel free to reach out!

- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2).
- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).

- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.
- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In International Conference on Artificial Intelligence and Statistics. PMLR.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1).
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.

- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning. PMLR.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.

Informative conditional coverage as such is impossible

• Impossibility results

 \hookrightarrow Lei and Wasserman (2014); Vovk (2012); Barber et al. (2021)

Without distribution assumption, in finite sample, a perfectly conditionally valid \widehat{C}_{α} is such that $\mathbb{P}\left\{ \operatorname{mes}\left(\widehat{C}_{\alpha}(x)\right) = \infty \right\} = 1$ for any non-atomic x.

• Approximate conditional coverage

 \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha} | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

CP-MDA with Exact masking

CQR-MDA with exact masking in words

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:

5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$

- 5.2 Impute the new calibration set
- 5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(S)$
- 5.4 Impute the test point
- 5.5 Predict with the quantile regressors and the correction previously obtained, $q_{1-\alpha}(S)$

CP-MDA-Nested

CQR-MDA with nested masking in words

- 1. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 1.1 Set $\tilde{M}^{(k)} = \max(M^{(k)}, M^{(n+1)})$ for k in the calibration set
 - 1.2 Impute the new calibration set
 - 1.3 For each augmented calibration point k:
 - 1.3.1 Get its score $S^{(k)}$

 $\begin{array}{c} \begin{array}{c} \text{Impute-then-predict on the augmented test point} \\ 1.3.2 & (X^{(n+1)}, \tilde{M}^{(k)}), \text{ giving:} \quad \widehat{QR}_{\alpha/2}(\tilde{X}^{(n+1),k}) \text{ and} \\ & \widehat{QR}_{1-\alpha/2}(\tilde{X}^{(n+1),k}) \end{array}$

1.3.3 Compute the corrected prediction interval: $[\widehat{QR}_{\alpha/2}(\tilde{X}^{(n+1),k}) - S^{(k)}; \widehat{QR}_{1-\alpha/2}(\tilde{X}^{(n+1),k}) + S^{(k)}] := [Z_{inf}^{(k)}; Z_{sup}^{(k)}]$ 1.4 Compute the quantiles $q_{\alpha}(\{Z_{inf}^{(k)}\}_{k\in\text{Cal}})$ and $q_{1-\alpha}(\{Z_{sup}^{(k)}\}_{k\in\text{Cal}})$ 1.5 Predict $[q_{\alpha}(\{Z_{inf}^{(k)}\}_{k\in\text{Cal}}); q_{1-\alpha}(\{Z_{sup}^{(k)}\}_{k\in\text{Cal}})]$

	3	NA		NA		1	
$ ilde{x}^{(1)}$	-1	NA	N	IA	1		
$ ilde{x}^{(2)}$	4	NA	N	IA	2		
$ ilde{x}^{(3)}$	5	NA	N	IA	NA		
$ ilde{x}^{(4)}$	0	NA	N	IA	1		

3	NA	NA	1
3	NA	NA	1
3	NA	NA	NA
3	NA	NA	1

Summary of CP-MDA

calibration set

