Conformal Prediction with Missing Values

Margaux Zaffran 54èmes Journées de Statistiques, Bruxelles, 2023 Session MALIA

Aymeric Dieuleveut Ecole Polytechnique Paris - France

Yaniv Romano Technion - Israel Institute of Technology Haifa - Israel

What about splitting the data?

Standard Split Conformal Prediction for Mean-Regression Conformalized Quantile Regression

Predictive uncertainty quantification with missing values

What about splitting the data?

Standard Split Conformal Prediction for Mean-Regression

Conformalized Quantile Regression

Predictive uncertainty quantification with missing values

Split Conformal Prediction (SCP)^{1,2,3}: toy example

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

[▶] Predict with $\hat{\mu}$

- ► Get the |residuals|, a.k.a. scores ${S^{(k)}}_{k \in Cal}$
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

Predict with \$\httt{\u03c0}\$
Build \$\hftac{C}_{\u03c0}(x)\$: [\$\u03c0(x) \pm q_{1-\u03c0}(S)\$]

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

SCP theoretical foundation

Definition (Exchangeability)

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of [1, n] we have:

$$\mathcal{L}\left(\left(X^{(1)}, Y^{(1)}\right), \dots, \left(X^{(n)}, Y^{(n)}\right)\right) \\ = \mathcal{L}\left(\left(X^{(\sigma(1))}, Y^{(\sigma(1))}\right), \dots, \left(X^{(\sigma(n))}, Y^{(\sigma(n))}\right)\right),$$

where \mathcal{L} designates the joint distribution.

SCP theoretical foundation

Definition (Exchangeability)

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of [1, n] we have:

$$\mathcal{L}\left(\left(X^{(1)}, Y^{(1)}\right), \dots, \left(X^{(n)}, Y^{(n)}\right)\right) \\ = \mathcal{L}\left(\left(X^{(\sigma(1))}, Y^{(\sigma(1))}\right), \dots, \left(X^{(\sigma(n))}, Y^{(\sigma(n))}\right)\right)$$

where \mathcal{L} designates the joint distribution.

Toy case: $Z^{(1)}$ and $Z^{(2)}$ are exchangeable if $(Z^{(1)}, Z^{(2)}) \stackrel{\mathcal{L}}{=} (Z^{(2)}, Z^{(1)})$.

Definition (Exchangeability)

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of [1, n] we have:

$$\mathcal{L}\left(\left(X^{(1)}, Y^{(1)}\right), \dots, \left(X^{(n)}, Y^{(n)}\right)\right) \\ = \mathcal{L}\left(\left(X^{(\sigma(1))}, Y^{(\sigma(1))}\right), \dots, \left(X^{(\sigma(n))}, Y^{(\sigma(n))}\right)\right),$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

Definition (Exchangeability)

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of $[\![1, n]\!]$ we have:

$$\mathcal{L}\left(\left(X^{(1)}, Y^{(1)}\right), \dots, \left(X^{(n)}, Y^{(n)}\right)\right) \\ = \mathcal{L}\left(\left(X^{(\sigma(1))}, Y^{(\sigma(1))}\right), \dots, \left(X^{(\sigma(n))}, Y^{(\sigma(n))}\right)\right)$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

Examples of exchangeable sequences

- i.i.d. samples
- ullet The components of ${\cal N}$

$$\begin{pmatrix} m \\ \vdots \\ \vdots \\ m \end{pmatrix}, \begin{pmatrix} \sigma^2 & & \\ & \ddots & \gamma^2 & \\ & \gamma^2 & \ddots & \\ & & & \sigma^2 \end{pmatrix} \end{pmatrix}$$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.). SCP applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha$$

Additionally, if the scores $\{S^{(k)}\}_{k \in Cal}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \le 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}$$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.). SCP applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S^{(k)}\}_{k \in Cal}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

X Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$

Predict with \$\httype{\mu}\$
Build \$\hat{C}_{\alpha}(x)\$: [\$\httype{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\$]

What about splitting the data?

Standard Split Conformal Prediction for Mean-Regression

Conformalized Quantile Regression

Predictive uncertainty quantification with missing values

Conformalized Quantile Regression (CQR)⁴

⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

CQR: theoretical guarantees

CQR is a particular case of SCP.

CQR: theoretical guarantees

CQR is a particular case of SCP.

Therefore, it enjoys finite sample guarantees proved in Romano et al. (2019).

Theorem

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.). CQR applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S^{(k)}\}_{k \in Cal}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \le 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

CQR: theoretical guarantees

CQR is a particular case of SCP.

Therefore, it enjoys finite sample guarantees proved in Romano et al. (2019).

Theorem

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.). CQR applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S^{(k)}\}_{k \in Cal}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \le 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

X Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$

What about splitting the data?

Predictive uncertainty quantification with missing values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions

What about splitting the data?

Predictive uncertainty quantification with missing values Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions

Data: $(X^{(k)}, Y^{(k)})_{k=1}^n$

Y	X_1	X_2	<i>X</i> ₃
22.42	0.55	0.67	0.03
8.26	0.72	0.18	0.55
19.41	0.60	0.58	NA
19.75	0.54	0.43	0.96
7.32	NA	0.19	NA
13.55	0.65	0.69	0.50
20.75	NA	NA	0.61
9.26	0.89	NA	0.84
9.68	0.963	0.45	0.65

Data:
$$(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$$

Y	X_1	X_2	X_3
22.42	0.55	0.67	0.03
8.26	0.72	0.18	0.55
19.41	0.60	0.58	NA
19.75	0.54	0.43	0.96
7.32	NA	0.19	NA
13.55	0.65	0.69	0.50
20.75	NA	NA	0.61
9.26	0.89	NA	0.84
9.68	0.963	0.45	0.65

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

Y	X_1	X_2	<i>X</i> ₃
22.42	0.55	0.67	0.03
8.26	0.72	0.18	0.55
19.41	0.60	0.58	NA
19.75	0.54	0.43	0.96
7.32	NA	0.19	NA
13.55	0.65	0.69	0.50
20.75	NA	NA	0.61
9.26	0.89	NA	0.84
9.68	0.963	0.45	0.65

Mask $M =$			
$(M_1$	M_2	<i>M</i> ₃)	
0	0	0	
0	0	0	
0	0	1	
0	0	0	
1	0	1	
0	0	0	
1	1	0	

0 1 0 0 0 0

 $\hookrightarrow 2^d$ potential masks.

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

Y	X_1	X_2	X_3
22.42	0.55	0.67	0.03
8.26	0.72	0.18	0.55
19.41	0.60	0.58	NA
19.75	0.54	0.43	0.96
7.32	NA	0.19	NA
13.55	0.65	0.69	0.50
20.75	NA	NA	0.61
9.26	0.89	NA	0.84
9.68	0.963	0.45	0.65

 $\hookrightarrow 2^d$ potential masks.

 $\hookrightarrow M$ can depend on X or Y.

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

Y	X_1	X_2	<i>X</i> ₃
22.42	0.55	0.67	0.03
8.26	0.72	0.18	0.55
19.41	0.60	0.58	NA
19.75	0.54	0.43	0.96
7.32	NA	0.19	NA
13.55	0.65	0.69	0.50
20.75	NA	NA	0.61
9.26	0.89	NA	0.84
9.68	0.963	0.45	0.65

$\hookrightarrow 2^d$ potential masks.

- $\hookrightarrow M$ can depend on X or Y.
- \Rightarrow Statistical and computational challenges.

Impute-then-regress procedures are widely used.

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\left\{ \underbrace{\phi(X_{obs(M^{(k)})}^{(k)}, M^{(k)})}_{U^{(k)} = \text{imputed } X^{(k)}}, Y^{(k)} \right\}_{k=1}^{n}$

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\left\{ \underbrace{\phi(X_{obs(M^{(k)})}^{(k)}, M^{(k)})}_{U^{(k)} = \text{imputed } X^{(k)}}, Y^{(k)} \right\}_{k=1}^{n}$

 \hookrightarrow we consider an impute-then-regress pipeline in this work.

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:
Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

For example: $\alpha = 0.1$ and obtain a 90% coverage interval.

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with **confidence** $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

2. Mask-Conditional-Validity (MCV)

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha.$$
 (MCV)

Ilustrations @theoremlinger

Predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

2. Mask-Conditional-Validity (MCV)

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha.$$
 (MCV)

3 considered approaches to reach these goals.

	Quantile Regression (QR)	
(MV)	?	
(MCV)	?	

• Marginal validity (eq. (MV), i.e. on average) is not reached!

10 / 28

• The predictive uncertainty strongly depends on the mask

	QR	
(MV)	×	
(MCV)	×	

- The predictive uncertainty strongly depends on the mask
 - \hookrightarrow missing values induce heteroskedasticity

- The predictive uncertainty strongly depends on the mask
- \hookrightarrow missing values induce heteroskedasticity
- $\,\hookrightarrow\,$ supported by theory on the Gaussian Linear Model

Theoretical study of the Gaussian linear model $(Y = \beta^T X + \varepsilon)$ generalizes \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X, M) is known

Theoretical study of the Gaussian linear model $(Y = \beta^T X + \varepsilon)$ generalizes \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X, M) is known

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$\mathcal{L}^*_{\alpha}(m) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\mathrm{mis}(m)}^{\mathcal{T}} \Sigma_{\mathrm{mis}|\mathrm{obs}}^m \beta_{\mathrm{mis}(m)} + \sigma_{\varepsilon}^2}$$

Theoretical study of the Gaussian linear model $(Y = \beta^T X + \varepsilon)$ generalizes \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X, M)is known

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$\mathcal{L}^*_{\alpha}(\textit{\textit{m}}) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\mathrm{mis}(\textit{m})}^{\mathcal{T}} \Sigma_{\mathrm{mis|obs}}^{\textit{m}} \beta_{\mathrm{mis}(\textit{m})} + \sigma_{\varepsilon}^2}$$

• Even with an homoskedastic noise, missingness generates heteroskedasticity

Theoretical study of the Gaussian linear model $(Y = \beta^T X + \varepsilon)$ generalizes \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X, M)is known

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$\mathcal{L}^*_{\alpha}(m) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\mathrm{mis}(m)}^{\mathcal{T}} \Sigma_{\mathrm{mis}|\mathrm{obs}}^m \beta_{\mathrm{mis}(m)} + \sigma_{\varepsilon}^2}$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)

What about splitting the data?

Predictive uncertainty quantification with missing values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions

Lemma

Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$ are *i.i.d.* (or exchangeable).

Then, for any missing mechanism, for almost all imputation function¹ ϕ : $\left(\phi\left(X_{obs(M^{(k)})}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

¹Even if the imputation is not accurate, the guarantee will hold.

Lemma

Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$ are *i.i.d.* (or exchangeable).

Then, for any missing mechanism, for almost all imputation function¹ ϕ : $\left(\phi\left(X_{obs(M^{(k)})}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

 \Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$

¹Even if the imputation is not accurate, the guarantee will hold.

CQR is marginally valid on imputed data sets

• Marginal (i.e. average) coverage is indeed recovered!

	QR	CQR	
(MV)	×	1	
(MCV)	×		

CQR is marginally valid on imputed data sets

• Disparities between masks is not corrected by the conformalization step.

	QR	CQR	
(MV)	×	 Image: A second s	
(MCV)	×	×	

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed \succ among all the data points, regardless of their mask!

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed > among all the data points, regardless of their mask!

Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set by mask is infeasible (lack of data)!

What about splitting the data?

Predictive uncertainty quantification with missing values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions

Missing Data Augmentation (MDA)

Idea: for each test point, modify the calibration points to mimic the test mask

Test point

Algorithms: MDA with Exact masking or with Nested masking.

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set

4. Train the quantile regressors on the imputed proper training set

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:

3	NA	NA	1
---	----	----	---

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:

5.1 For each
$$j \in [\![1, d]\!]$$
 s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
 - 5.2 Impute the new calibration set

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
 - 5.2 Impute the new calibration set
 - 5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(S)$

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:

- 5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
- 5.2 Impute the new calibration set
- 5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(S)$
- 5.4 Impute the test point

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
 - 5.2 Impute the new calibration set
 - 5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(S)$
 - 5.4 Impute the test point
 - 5.5 Predict with the quantile regressors and the correction previously obtained, $q_{1-\alpha}(S)$

Theorem (CP-MDA-Exact achieves MCV)

If the data is exchangeable and $M \perp (X, Y)$, then for almost all imputation function CP-MDA-Exact is such that for any $m \in \{0, 1\}^d$:

$$\mathbb{P}\left(Y\in\widehat{\mathcal{C}}_{lpha}\left(X,m
ight)|M=m
ight)\geq1-lpha,$$

and if additionally the scores are almost surely distinct:

$$\mathbb{P}\left(Y \in \widehat{\mathcal{C}}_{\alpha}\left(X, m\right) | M = m\right) \leq 1 - \alpha + \frac{1}{1 + \# \mathrm{Cal}^{\mathrm{m}}}$$
MDA achieves Mask-Conditional-Validity (MCV), cont'd

MDA achieves Mask-Conditional-Validity in an informative way

What about splitting the data?

Predictive uncertainty quantification with missing values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions

- Imputation by iterative ridge (\sim conditional expectation)

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
 - $\circ~$ MCAR missing values, with probability 20%

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
 - $\circ~$ MCAR missing values, with probability 20%
 - \circ 100 repetitions

Before more experiments, visualisation

Before more experiments, visualisation

 $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$

- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$
- $igstarrow : ext{highest coverage, i.e.} \ \max_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$
- $igstarrow : ext{highest coverage, i.e.} \ \max_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

- 30 hospitals
- More than 30 000 trauma patients
- 4 000 new patients per year
- 250 continuous and categorical variables
 → Many useful statistical tasks

- 30 hospitals
- More than 30 000 trauma patients
- 4 000 new patients per year
- 250 continuous and categorical variables
 - $\hookrightarrow \mathsf{Many} \text{ useful statistical tasks}$

Predict the level of platelets upon arrival at hospital, given 7 covariates chosen by medical doctors.

- 30 hospitals
- More than 30 000 trauma patients
- 4 000 new patients per year
- 250 continuous and categorical variables
 - $\hookrightarrow \mathsf{Many} \text{ useful statistical tasks}$

Predict the level of platelets upon arrival at hospital, given 7 covariates chosen by medical doctors.

These covariates are not always observed: from 0% to 24% of missing values by features, with a total average of 7%.

Real data experiment: TraumaBase[®], critical care medicine

What about splitting the data?

Predictive uncertainty quantification with missing values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions
- Consistency of universal quantile learner when chained with almost any imputation function.
- CP-MDA-Nested, an algorithm which does not discard any calibration point.

• CP marginal guarantees hold on the imputed data set.

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).

Thanks for listening! Any question? :)

- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML 2002*. Springer.
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *NeurIPS*.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.