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Split Conformal Prediction (SCP)1,2,3: toy example
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Split Conformal Prediction (SCP)1,2,3: training step

0 2 4
X

−2

0

2

Y

1

▶ Learn (or get) µ̂

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

1 / 28



Split Conformal Prediction (SCP)1,2,3: calibration step
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▶ Predict with µ̂

▶ Get the |residuals|, a.k.a. scores{
S (k)

}
k∈Cal

▶ Compute the (1− α) empirical

quantile of

S = {|residuals|}Cal ∪ {+∞},
noted q1−α (S)
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Split Conformal Prediction (SCP)1,2,3: prediction step
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SCP theoretical foundation

Definition (Exchangeability)(
X (k),Y (k)

)n
k=1

are exchangeable if for any permutation σ of J1, nK we have:

L
((
X (1),Y (1)

)
, . . . ,

(
X (n),Y (n)

))
= L

((
X (σ(1)),Y (σ(1))

)
, . . . ,

(
X (σ(n)),Y (σ(n))

))
,

where L designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

• The components of N



m
...
...

m

 ,


σ2

. . . γ2

γ2 . . .

σ2




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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose
(
X (k),Y (k)

)n+1

k=1
are exchangeable (or i.i.d.). SCP applied on(

X (k),Y (k)
)n
k=1

outputs Ĉα (·) such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (k)

}
k∈Cal

are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α+

1

#Cal+ 1
.

✗ Marginal coverage: P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
������|X (n+1) = x

}
≥ 1− α
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Standard mean-regression SCP is not adaptive
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▶ Predict with µ̂

▶ Build Ĉα(x): [µ̂(x)± q1−α (S)]
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Conformalized Quantile Regression (CQR)4
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Conformalized Quantile Regression (CQR)4: training step
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▶ Learn (or get) Q̂R lower and

Q̂Rupper
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Conformalized Quantile Regression (CQR)4: calibration step

+

+

+ ++
++

+

-
--

-

++

- -

▶ Predict with Q̂R lower and

Q̂Rupper

▶ Get the scores

S =
{
S (k)

}
Cal

∪ {+∞}
▶ Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ S (k) := max
{
Q̂R lower

(
X (k)

)
− Y (k),Y (k) − Q̂Rupper

(
X (k)

)}

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4: prediction step
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▶ Predict with Q̂R lower and

Q̂Rupper

▶ Build

Ĉα(x) = [Q̂R lower(x)− q1−α (S); Q̂Rupper(x) + q1−α (S)]

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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CQR: theoretical guarantees

CQR is a particular case of SCP.

Therefore, it enjoys finite sample guarantees proved in Romano et al. (2019).

Theorem

Suppose
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Missing values are ubiquitous and challenging

Data:
(
X (k), Y (k)

)n
k=1

Data:
(
X (k),M(k),Y (k)

)n
k=1

Y X1 X2 X3

22.42 0.55 0.67 0.03

8.26 0.72 0.18 0.55

19.41 0.60 0.58 NA

19.75 0.54 0.43 0.96

7.32 NA 0.19 NA

13.55 0.65 0.69 0.50

20.75 NA NA 0.61

9.26 0.89 NA 0.84

9.68 0.963 0.45 0.65

Mask M =

(M1 M2 M3)

0 0 0

0 0 0

0 0 1

0 0 0

1 0 1

0 0 0

1 1 0

0 1 0

0 0 0

↪→ 2d potential masks.

↪→ M can depend on X or Y .

⇒ Statistical and computational challenges.
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Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ.

-1 -10 6 0

4 -2 2

5 1 2

0 1

-1 -10 6 0

4 -2 2

5 1 2

0 1

-4.5

1

-4.5

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

data:

ϕ
(
X

(k)

obs(M(k))
,M(k)

)
︸ ︷︷ ︸

U(k)=imputed X (k)

,Y (k)


n

k=1

.

↪→ we consider an impute-then-regress pipeline in this work.
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Predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1− α, i.e. build the smallest Cα such that:

1. Marginal Validity (MV)

P
{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)}
≥ 1− α. (MV)

2. Mask-Conditional-Validity (MCV)

∀m ∈ {0, 1}d : P
{
Y (n+1) ∈ Cα

(
X (n+1),m

)
|M(n+1) = m

}
≥ 1−α. (MCV)
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Predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1− α, i.e. build the smallest Cα such that:

1. Marginal Validity (MV)

P
{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)}
≥ 1− α. (MV)

2. Mask-Conditional-Validity (MCV)

∀m ∈ {0, 1}d : P
{
Y (n+1) ∈ Cα

(
X (n+1),m

)
|M(n+1) = m

}
≥ 1−α. (MCV)

3 considered approaches to reach these goals.

Quantile Regression (QR)

(MV) ?

(MCV) ?
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Quantile Regression (QR) intervals

• Marginal validity (eq. (MV), i.e. on average) is not reached!

QR

(MV) ✗

(MCV)

↪→ missing values induce heteroskedasticity

↪→ supported by theory on the Gaussian Linear Model
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Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model (Y = βTX + ε) generalizes

↪→ oracle intervals: smallest predictive interval when the distribution of Y |(X ,M)

is known

Proposition (Oracle intervals under the Gaussian lin. mod.)

L∗
α(m) = 2× q

N (0,1)
1−α/2 ×

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε .

• Even with an homoskedastic noise, missingness generates heteroskedasticity

• The uncertainty increases when missing values are associated with

larger regression coefficients (i.e. the most predictive variables)
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CP is marginally valid (MV) after imputation

Lemma

Assume
(
X (k),M(k),Y (k)

)n
k=1

are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation function1 ϕ:(
ϕ
(
X

(k)

obs(M(k))
,M(k)

)
,Y (k)

)n

k=1
are exchangeable.

⇒ CQR, and Conformal Prediction, applied on an imputed data set still enjoys

marginal guarantees:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)}
≥ 1− α.

1Even if the imputation is not accurate, the guarantee will hold.
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CQR is marginally valid on imputed data sets

• Marginal (i.e. average) coverage is indeed recovered!

QR CQR

(MV) ✗ ✓

(MCV) ✗
13 / 28
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Conformalization step is independent of the important variable: the mask!

Observation: the α-correction term is computed

among all the data points, regardless of their mask!
+

+

+ ++
++

+

-
--

-

++

- -

Warning: 2d possible masks

⇒ Splitting the calibration set by mask is infeasible (lack of data)!

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 6 0 1

Test point

-1 -10 6 1

Calibration set used

Initial calibration set

3 1

Test point

0 1

Calibration set used
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Missing Data Augmentation (MDA)

Idea: for each test point, modify the calibration points to mimic the test mask

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

5

0 1

Calibration set used
Initial calibration set

Algorithms: MDA with Exact masking or with Nested masking.
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CP-MDA with Exact masking
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CQR-MDA with exact masking in words

1. Split the training set into a proper training set

and calibration set
0 1 2 3 4 5

X

−4

−2

0

2

Y

Train Cal Test

12. Train the imputation function on the proper training set

3. Impute the proper training set

4. Train the quantile regressors on the imputed proper

training set
0 2 4

X

−4

−2

0

2

Y

1

5. For a test point
(
X (n+1),M(n+1)

)
: 3 1

5.1 For each j ∈ J1, dK s.t. M
(n+1)
j = 1, set M̃

(k)
j = 1

for k in Cal s.t. M(k) ⊂ M(n+1)

-1 1

4 2

0 1

5.2 Impute the new calibration set

5.3 Compute the calibration correction, i.e. q1−α(S)
5.4 Impute the test point

5.5 Predict with the quantile regressors and the correction previously obtained,

q1−α(S)
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MDA achieves Mask-Conditional-Validity (MCV)

Theorem (CP-MDA-Exact achieves MCV)

If the data is exchangeable and M ⊥⊥ (X ,Y ), then for almost all imputation

function CP-MDA-Exact is such that for any m ∈ {0, 1}d :

P
(
Y ∈ Ĉα (X ,m) |M = m

)
≥ 1− α,

and if additionally the scores are almost surely distinct:

P
(
Y ∈ Ĉα (X ,m) |M = m

)
≤ 1− α+

1

1 +#Calm
.

18 / 28



MDA achieves Mask-Conditional-Validity (MCV), cont’d
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MDA achieves Mask-Conditional-Validity in an informative way
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Some settings

• Imputation by iterative ridge (∼ conditional expectation)

• Concatenate the mask in the features

• Neural network, fitted to minimize the pinball loss

• (Semi)-synthetic experiments:

◦ MCAR missing values, with probability 20%

◦ 100 repetitions
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Synthetic experiments (Gaussian linear model, d = 10)
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Before more experiments, visualisation
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Semi-synthetic experiments
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Semi-synthetic experiments
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Semi-synthetic experiments
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TraumaBase®: decision support for trauma patients

• 30 hospitals

• More than 30 000 trauma patients

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of platelets upon arrival at hospital, given 7 covariates chosen by

medical doctors.

These covariates are not always observed: from 0% to 24% of missing values by

features, with a total average of 7%.
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Real data experiment: TraumaBase®, critical care medicine
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What about splitting the data?

Predictive uncertainty quantification with missing values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Conclusions



Extensions

• Consistency of universal quantile learner when chained with almost any

imputation function.

• CP-MDA-Nested, an algorithm which does not discard any calibration point.

Paper −→
Poster −→
Code −→

27 / 28

https://mzaffran.github.io/uq-na/


Take-home-messages

• CP marginal guarantees hold on the imputed data set.

• Missingness introduces additional heteroskedasticity, creating a need for

quantile regression based methods.

• CQR fails to attain coverage conditional on the missing pattern.

• Missing data augmentation is the first method to output predictive

intervals with missing values.

• Missing data augmentation attains conditional coverage with respect to the

missing pattern (in MCAR setting).
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Thanks for listening! Any question? :)
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