Conformal prediction with missing values

Margaux Zaffran
LPSM PhD Students Seminar
February 20, 2023

Aymeric Dieuleveut Julie Josse
Ecole
Polytechnique
Paris

INRIA
IDESP
Montpellier

Yaniv Romano
Technion - Israel Institute of Technology Haifa

Motivation: critical medical care

- More than 30000 trauma patients
- 30 hospitals
- 4000 new patients per year
- 250 continuous and categorical variables
\hookrightarrow Many useful statistical tasks

TraumaBase ${ }^{\circledR}$: decision support for trauma patients

- More than 30000 trauma patients
- 30 hospitals
- 4000 new patients per year
- 250 continuous and categorical variables
\hookrightarrow Many useful statistical tasks
Predict the level of platelets upon arrival at hospital, given 7 covariates chosen by medical doctors.

TraumaBase ${ }^{\circledR}$: decision support for trauma patients

- More than 30000 trauma patients
- 30 hospitals
- 4000 new patients per year
- 250 continuous and categorical variables
\hookrightarrow Many useful statistical tasks
Predict the level of platelets upon arrival at hospital, given 7 covariates chosen by medical doctors.

These covariates are not always observed.

Missing values: ubiquitous in data science pratice

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
22.42	0.55	0.67	0.03	0.75	0.05	0.05
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

Missing values: ubiquitous in data science pratice

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
22.42	0.55	0.67	0.03	0.75	0.05	0.05
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

[^0]
Missing values: ubiquitous in data science pratice

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
22.42	0.55	0.67	0.03	0.75	0.05	0.05
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

If each entry has a probability 0.01 of being missing:

$$
\begin{aligned}
d=6 & \rightarrow \approx 94 \% \text { of rows kept } \\
d=300 & \rightarrow \approx 5 \% \text { of rows kept }
\end{aligned}
$$

Missing values: ubiquitous in data science pratice

Y	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
22.42	0.55	0.67	0.03	0.75	0.05	0.05
8.26	0.72	0.18	0.55	0.05	0.73	0.50
19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
7.32	NA	0.19	NA	0.02	0.83	0.04
13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	NA

If each entry has a probability 0.01 of being missing:

$$
\begin{aligned}
d=6 & \rightarrow \approx 94 \% \text { of rows kept } \\
d=300 & \rightarrow \approx 5 \% \text { of rows kept }
\end{aligned}
$$

One of the ironies of Big Data is that missing data play an ever more significant role. ${ }^{1}$

Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

[^1]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example
 We observe (nA, 6, 2). Then $m=(1,0,0)$.

[^2]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe $(-1, N A, 2)$. Then $m=(0,1,0)$.

[^3]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe (-1, NA, NA $)$. Then $m=(0,1,1)$.

[^4]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA}$). Then $m=(0,1,1)$.

There are 2^{d} patterns (statistical and computational challenges).

[^5]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA}$). Then $m=(0,1,1)$.

There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.

[^6]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe (-1 , NA, NA). Then $m=(0,1,1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.
\hookrightarrow Missing Completely At Random (MCAR): $\mathbb{P}(M=m \mid X)=\mathbb{P}(M=m)$ for all $m \in\{0,1\}^{d}$.

[^7]
Handling missing values depends on pattern and mechanism

- $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ random variables.
- $M \in\{0,1\}^{d}$ is defined as $M_{j}=1 \Leftrightarrow X_{j}$ is missing. M is called the mask or the missing pattern.

Example

We observe ($-1, \mathrm{NA}, \mathrm{NA}$). Then $m=(0,1,1)$.
There are 2^{d} patterns (statistical and computational challenges).

- Three mechanisms ${ }^{2}$ can generate missing values.
\hookrightarrow Missing Completely At Random (MCAR): $\mathbb{P}(M=m \mid X)=\mathbb{P}(M=m)$ for all $m \in\{0,1\}^{d} . M \Perp X$, missingness does not depend on the variables.

[^8]
Supervised learning with missing values

Impute-then-regress procedures are widely used (Le Morvan et al., 2021).

Le Morvan et al. (2021), What's a good imputation to predict with missing values?, NeurIPS

Supervised learning with missing values

Impute-then-regress procedures are widely used (Le Morvan et al., 2021).

1. Replace NA using an imputation function (e.g. the mean), noted ϕ.

Le Morvan et al. (2021), What's a good imputation to predict with missing values?, NeurIPS

Supervised learning with missing values

Impute-then-regress procedures are widely used (Le Morvan et al., 2021).

1. Replace NA using an imputation function (e.g. the mean), noted ϕ.

	$x^{(1)}$	-1	-10	6
0				
$x^{(2)}$	4	NA	-2	2
	$x^{(3)}$	5	1	2
$x^{(4)}$	0	NA	NA	1

\longrightarrow| | $u^{(1)}$ | -1 | -10 | 6 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $u^{(2)}$ | 4 | -4.5 | -2 | 2 |
| | $u^{(3)}$ | 5 | 1 | 2 | 1 |
| | $u^{(4)}$ | 0 | -4.5 | 3 | 1 |
| | | | | | |

Supervised learning with missing values

Impute-then-regress procedures are widely used (Le Morvan et al., 2021).

1. Replace NA using an imputation function (e.g. the mean), noted ϕ.
2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\{\underbrace{\phi\left(x_{\text {obs }\left(m^{(k)}\right)}^{(k)}, m^{(k)}\right)}_{\text {imputed } x^{(k)}}, y^{(k)}\}_{k=1}^{n}$.

Le Morvan et al. (2021), What's a good imputation to predict with missing values?, NeurIPS

Supervised learning with missing values

Impute-then-regress procedures are widely used (Le Morvan et al., 2021).

1. Replace NA using an imputation function (e.g. the mean), noted ϕ.
2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\{\underbrace{\phi\left(x_{\text {obs }\left(m^{(k)}\right)}^{(k)}, m^{(k)}\right)}_{\text {imputed } x^{(k)}}, y^{(k)}\}_{k=1}^{n}$.

Le Morvan et al. (2021) show that for any deterministic imputation and universal learner this procedure is Bayes-consistent.

Le Morvan et al. (2021), What's a good imputation to predict with missing values?, NeurIPS

Back to predicting the levels of platelets

- Challenging task: Jiang et al. (2022) achieved an average relative prediction error $\left(\|\hat{y}-y\|^{2} /\|y\|^{2}\right)$ no lower than 0.23

Back to predicting the levels of platelets

- Challenging task: Jiang et al. (2022) achieved an average relative prediction error $\left(\|\hat{y}-y\|^{2} /\|y\|^{2}\right)$ no lower than 0.23
- Crucial task: high-stakes decision-making problem
\hookrightarrow High need for quantifying the predictive uncertainty.

Beyond point prediction?

Objective

- Predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- Miscoverage level $\alpha \in[0,1]$
- Build a predictive interval \mathcal{C}_{α} such that:

$$
\begin{equation*}
\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1-\alpha \tag{1}
\end{equation*}
$$

and \mathcal{C}_{α} should be as small as possible, in order to be informative.

Split conformal prediction ${ }^{1,2,3}$: toy example

[^9]
Split conformal prediction ${ }^{1,2,3}$: proper training step

- Learn $\hat{\mu}$

[^10]
Split conformal prediction ${ }^{1,2,3}$: calibration step

- Predict with $\hat{\mu}$
- Get the residuals
- Compute the $(1-\alpha) \times\left(1+\frac{1}{\# \text { Cal }}\right)$ empirical quantile of the $\left|\hat{\varepsilon}^{(k)}\right|$, noted $Q_{1-\tilde{\alpha}}\left(\left|\hat{\varepsilon}^{(k)}\right|\right)$

[^11]
Split conformal prediction ${ }^{1,2,3}:$ prediction step

- Predict with $\hat{\mu}$
- Build $\widehat{C}_{\alpha}(x)$:
$[\hat{\mu}(x) \pm$
$\left.Q_{1-\tilde{\alpha}}\left(\left|\hat{\varepsilon}^{(k)}\right|\right)\right]$

[^12]
Theory on SCP

Papadopoulos et al. (2002); Lei et al. (2018) prove that:

- given any regression function $\hat{\mu}$
- for any (finite) sample size n
- if the $\left(X^{(k)}, Y^{(k)}\right)$ are exchangeable
then:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X)\right) \geq 1-\alpha
$$

Theory on SCP

Papadopoulos et al. (2002); Lei et al. (2018) prove that:

- given any regression function $\hat{\mu}$
- for any (finite) sample size n
- if the $\left(X^{(k)}, Y^{(k)}\right)$ are exchangeable
then:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X)\right) \geq 1-\alpha
$$

If additionally the scores $\left|\hat{\varepsilon}_{k}\right|$ are almost surely distinct:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X)\right) \leq 1-\alpha+\frac{1}{1+\# \mathrm{Cal}}
$$

Split conformal prediction: summary

Split conformal prediction is simple to compute and works:

- any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;
- finite sample.

Split conformal prediction: summary

Split conformal prediction is simple to compute and works:

- any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;
- finite sample.

The theoretical guarantee is marginal over the joint distribution of (X, Y), and not conditional. No guarantee that for any $x \in \mathbb{R}$:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) \mid X^{(n+1)}=x\right\} \geq 1-\alpha
$$

Split conformal prediction: summary

Split conformal prediction is simple to compute and works:

- any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;
- finite sample.

The theoretical guarantee is marginal over the joint distribution of (X, Y), and not conditional. No guarantee that for any $x \in \mathbb{R}$:

$$
\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) \mid X^{(n+1)}=x\right\} \geq 1-\alpha
$$

Split conformal prediction ${ }^{1,2,3}:$ prediction step

- Predict with $\hat{\mu}$
- Build $\widehat{C}_{\alpha}(x)$:
$[\hat{\mu}(x) \pm$
$\left.Q_{1-\tilde{\alpha}}\left(\left|\hat{\varepsilon}^{(k)}\right|\right)\right]$

[^13]
Conformalized Quantile Regression (Romano et al., 2019)

Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

Conformalized Quantile Regression (Romano et al., 2019)

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

Conformalized Quantile Regression (Romano et al., 2019)

- Predict with $\hat{q}_{\text {inf }}$ and $\hat{q}_{\text {sup }}$
- Get the scores
- Compute the $(1-\alpha) \times\left(1+\frac{1}{\# \text { Cal }}\right)$ empirical quantile of the $e^{(k)}$, noted $Q_{1-\tilde{\alpha}}(e)$

$$
\hookrightarrow \quad e^{(k)}:=\max \left\{\hat{q}_{\text {inf }}\left(x^{(k)}\right)-y^{(k)}, y^{(k)}-\hat{q}_{\text {sup }}\left(x^{(k)}\right)\right\}
$$

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

Conformalized Quantile Regression (Romano et al., 2019)

- Predict with $\hat{q}_{\text {inf }}$ and $\hat{q}_{\text {sup }}$
- Build $\hat{C}_{\alpha}(x)$:

$$
\begin{gathered}
{\left[\hat{q}_{\text {inf }}(x)-Q_{1-\tilde{\alpha}}(e),\right.} \\
\left.\hat{q}_{\text {sup }}(x)+Q_{1-\tilde{\alpha}}(e)\right]
\end{gathered}
$$

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

Theory on CQR

Romano et al. (2019) prove that:

- given any quantile regression functions $\hat{q}_{\text {inf }}$ and $\hat{q}_{\text {sup }}$
- for any (finite) sample size n
- if the $\left(X^{(k)}, Y^{(k)}\right)$ are exchangeable
then:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X)\right) \geq 1-\alpha
$$

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

Theory on CQR

Romano et al. (2019) prove that:

- given any quantile regression functions $\hat{q}_{\text {inf }}$ and $\hat{q}_{\text {sup }}$
- for any (finite) sample size n
- if the $\left(X^{(k)}, Y^{(k)}\right)$ are exchangeable
then:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X)\right) \geq 1-\alpha
$$

If additionally the scores $e^{(k)}$ are almost surely distinct:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}(X)\right) \leq 1-\alpha+\frac{1}{1+\# \mathrm{Cal}}
$$

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

Conformal prediction with missing values

Impute-then-regress+conformalization is marginally valid

To apply conformal prediction we need exchangeable data.

Impute-then-regress+conformalization is marginally valid

To apply conformal prediction we need exchangeable data.
Lemma (Exchangeability after imp., Zaffran et al., 2023)
Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ϕ :
$\left(\phi\left(X_{o b s\left(M^{(k)}\right)}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.

Impute-then-regress+conformalization is marginally valid

To apply conformal prediction we need exchangeable data.
Lemma (Exchangeability after imp., Zaffran et al., 2023)
Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ϕ :
$\left(\phi\left(X_{o b s\left(M^{(k)}\right)}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.
\Rightarrow Conformal prediction applied on an imputed data set still enjoys marginal guarantees:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}\left(X_{\mathrm{obs}(M)}, M\right)\right) \geq 1-\alpha
$$

Impute-then-regress+conformalization is marginally valid

To apply conformal prediction we need exchangeable data.
Lemma (Exchangeability after imp., Zaffran et al., 2023)
Assume $\left(X^{(k)}, M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are i.i.d. (or exchangeable).
Then, for any missing mechanism, for almost all imputation function ϕ :
$\left(\phi\left(X_{o b s\left(M^{(k)}\right)}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are exchangeable.
\Rightarrow Conformal prediction applied on an imputed data set still enjoys marginal guarantees:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}\left(X_{\mathrm{obs}(M)}, M\right)\right) \geq 1-\alpha
$$

Even if the imputation is not accurate, the guarantee will hold.

CQR performances on an illustrative example

$$
Y=\beta^{\top} X+\varepsilon,
$$

with $\beta=(1,2,-1)^{T}, \varepsilon \Perp X$ and X and ε are Gaussian.

CQR performances on an illustrative example

$$
Y=\beta^{\top} X+\varepsilon,
$$

with $\beta=(1,2,-1)^{T}, \varepsilon \Perp X$ and X and ε are Gaussian.

CQR performances on an illustrative example

$$
Y=\beta^{\top} X+\varepsilon,
$$

with $\beta=(1,2,-1)^{T}, \varepsilon \Perp X$ and X and ε are Gaussian.

Warning: the predictive intervals cover properly marginally, but suffer from high disparities depending on the missing patterns.

Missing data augmentation

Goal: validity conditionally to the mask

Goal: for any $m \in \mathcal{M} \subset\{0,1\}^{d}$:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}\left(X_{\mathrm{obs}(M)}, M\right) \mid M=m\right) \geq 1-\alpha .
$$

Issue during the calibration step

- Predict with $\hat{q}_{\text {inf }}$ and $\hat{q}_{\text {sup }}$
- Get the scores $e^{(k)}$
- Compute the $(1-\alpha) \times\left(1+\frac{1}{\# \text { Cal }}\right)$ empirical quantile of the $e^{(k)}$, noted $Q_{1-\tilde{\alpha}}(e)$

Missing data augmentation of the calibration set

Missing data augmentation of the calibration set

Test point

CQR-MDA with exact masking in words

1. Split your training set into a proper training set and calibration set
2. Train your imputation function on the proper training set
3. Impute the proper training set
4. Train your quantile regressors on the imputed proper training set
5. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:

CQR-MDA with exact masking in words

1. Split your training set into a proper training set and calibration set
2. Train your imputation function on the proper training set
3. Impute the proper training set
4. Train your quantile regressors on the imputed proper training set
5. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ such that $m_{j}^{(n+1)}=1$, set $\tilde{m}_{j}^{(k)}=1$ (i.e. set
$\left.\tilde{x}_{j}^{(k)}=\mathrm{NA}\right)$ for k in the calibration set such that $m^{(k)} \subset m^{(n+1)}$

CQR-MDA with exact masking in words

1. Split your training set into a proper training set and calibration set
2. Train your imputation function on the proper training set
3. Impute the proper training set
4. Train your quantile regressors on the imputed proper training set
5. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
5.1 For each $j \in \llbracket 1, d \rrbracket$ such that $m_{j}^{(n+1)}=1$, set $\tilde{m}_{j}^{(k)}=1$ (i.e. set
$\left.\tilde{x}_{j}^{(k)}=\mathrm{NA}\right)$ for k in the calibration set such that $m^{(k)} \subset m^{(n+1)}$
5.2 Impute the new calibration set
5.3 Compute the calibration correction
5.4 Impute the test point
5.5 Predict with the quantile regressors and the correction previously obtained

Conditional validity

Theorem (Zaffran et al., 2023)

If the data is exchangeable and MCAR, then for almost all imputation function the proposed methodology is such that for any $m \in \mathcal{M} \subset\{0,1\}^{d}$:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}\left(X_{o b s(M)}, M\right) \mid M=m\right) \geq 1-\alpha
$$

and if additionally the scores are almost surely distinct:

$$
\mathbb{P}\left(Y \in \hat{C}_{\alpha}\left(X_{o b s(M)}, M\right) \mid M=m\right) \leq 1-\alpha+\frac{1}{1+\# \mathrm{Cal}^{\mathrm{m}}}
$$

Empirical coverages

Empirical lengths

Experimental results

Visualisation

Semi-synthetic experiments

Semi-synthetic experiments

Semi-synthetic experiments

Semi-synthetic experiments

- QR
- CQR
- CQR-MDA-Exact
- Marginal
v Lowest
© Highest

Real data experiment: back to critical care medicine

Conclusion

Extensions

- Theoretical analysis of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ corroborating our intuition.

Extensions

- Theoretical analysis of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ corroborating our intuition.
- Consistency of universal quantile learner when chained with almost any imputation function.

Extensions

- Theoretical analysis of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ corroborating our intuition.
- Consistency of universal quantile learner when chained with almost any imputation function.
- CP-MDA-Nested, an algorithm which does not discard any calibration point.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.

Take-home-messages

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).

Thank you!

References i

Jiang, W., Bogdan, M., Josse, J., Majewski, S., Miasojedow, B., Ročková, V., and TraumaBase ® Group (2022). Adaptive bayesian slope: Model selection with incomplete data. Journal of Computational and Graphical Statistics, 31(1):113-137.
Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021).
What's a good imputation to predict with missing values? NeurIPS.

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. Journal of the American Statistical Association.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In Machine Learning: ECML 2002. Springer.

References if

Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. NeurIPS.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581-592.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic Learning in a Random World. Springer US.

Zhu, Z., Wang, T., and Samworth, R. J. (2019). High-dimensional principal component analysis with heterogeneous missingness.

Gaussian linear model

Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ generalizes:

Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ generalizes:

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\operatorname{mis} \mid \mathrm{obs}}^{m} \beta_{\mathrm{mis}(m)}+\sigma_{\varepsilon}^{2}} .
$$

Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ generalizes:

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\text {mis } \mid \mathrm{obs}}^{m} \beta_{\mathrm{mis}(m)}+\sigma_{\varepsilon}^{2}} .
$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity

Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ generalizes:

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\operatorname{mis} \mid \mathrm{obs}}^{m} \beta_{\mathrm{mis}(m)}+\sigma_{\varepsilon}^{2}} .
$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)

Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model $\left(Y=\beta^{T} X+\varepsilon\right)$ generalizes:

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$
\mathcal{L}_{\alpha}^{*}(m)=2 \times q_{1-\alpha / 2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\operatorname{mis}(m)}^{T} \sum_{\operatorname{mis} \mid \mathrm{obs}}^{m} \beta_{\operatorname{mis}(m)}+\sigma_{\varepsilon}^{2}} .
$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)
- The uncertainty increases when there are more missing values

CP-MDA-Nested

CP-MDA-Exact reminder

Test point

What if we kept all individuals?

Test point

What if we kept all individuals?

- Predict with $\hat{q}_{\text {inf }}$ and $\hat{q}_{\text {sup }}$
- Build $\hat{C}_{\hat{\alpha}}(x)$:

$$
\begin{gathered}
{\left[\hat{q}_{\text {inf }}(x)-Q_{1-\tilde{\alpha}}(e),\right.} \\
\left.\hat{q}_{\text {sup }}(x)+Q_{1-\tilde{\alpha}}(e)\right]
\end{gathered}
$$

Idea: modify the test point accordingly

Test point

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 For each $j \in \llbracket 1, d \rrbracket$ such that $m_{j}^{(n+1)}=1$, set $\tilde{m}_{j}^{(k)}=1$ (i.e. set $\left.\tilde{x}_{j}^{(k)}=\mathrm{NA}\right)$ for k in the calibration set such that $m^{(k)} \subset m^{(n+1)}$

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 For each $j \in \llbracket 1, d \rrbracket$ such that $m_{j}^{(n+1)}=1$, set $\tilde{m}_{j}^{(k)}=1$ (i.e. set $\left.\tilde{x}_{j}^{(k)}=N A\right)$ for k in the calibration set

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :
1.3.1 Get its score

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :
1.3.1 Get its score
1.3.2 Impute-then-predict on the augmented test point $\left(x^{(n+1)}, \tilde{m}^{(k)}\right)$, giving: $\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)$ and $\hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)$

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :
1.3.1 Get its score
1.3.2 Impute-then-predict on the augmented test point $\left(x^{(n+1)}, \tilde{m}^{(k)}\right)$, giving: $\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)$ and $\hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)$
1.3.3 Compute the corrected prediction interval:

$$
\left[\hat{q}_{\inf }\left(\tilde{x}^{(n+1), k}\right)-e^{(k)}, \hat{q}_{\sup }\left(\tilde{x}^{(n+1), k}\right)+e^{(k)}\right]:=\left[Z_{\inf }^{(k)}, Z_{\sup }^{(k)}\right]
$$

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :
1.3.1 Get its score
1.3.2 Impute-then-predict on the augmented test point $\left(x^{(n+1)}, \tilde{m}^{(k)}\right)$, giving: $\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)$ and $\hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)$
1.3.3 Compute the corrected prediction interval:

$$
\left[\hat{q}_{\mathrm{inf}}\left(\tilde{x}^{(n+1), k}\right)-e^{(k)} ; \hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)+e^{(k)}\right]:=\left[z_{\text {inf }}^{(k)} ; z_{\text {sup }}^{(k)}\right]
$$

1.4 Compute the quantiles $Q_{\tilde{\alpha}}\left(\left\{z_{\text {inf }}^{(k)}\right\}_{k \in \text { Cal }}\right)$ and $Q_{1-\tilde{\alpha}}\left(\left\{z_{\text {sup }}^{(k)}\right\}_{k \in \text { Cal }}\right)$

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :
1.3.1 Get its score
1.3.2 Impute-then-predict on the augmented test point $\left(x^{(n+1)}, \tilde{m}^{(k)}\right)$, giving: $\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)$ and $\hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)$
1.3.3 Compute the corrected prediction interval:

$$
\left[\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)-e^{(k)} ; \hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)+e^{(k)}\right]:=\left[z_{\text {inf }}^{(k)} ; z_{\text {sup }}^{(k)}\right]
$$

1.4 Compute the quantiles $Q_{\tilde{\alpha}}\left(\left\{z_{\text {inf }}^{(k)}\right\}_{k \in \mathrm{Cal}}\right)$ and $Q_{1-\tilde{\alpha}}\left(\left\{z_{\text {sup }}^{(k)}\right\}_{k \in \mathrm{Cal}}\right)$
1.5 Predict $\left[Q_{\tilde{\alpha}}\left(\left\{z_{\text {inf }}^{(k)}\right\}_{k \in \mathrm{Cal}}\right) ; Q_{1-\tilde{\alpha}}\left(\left\{z_{\text {sup }}^{(k)}\right\}_{k \in \mathrm{Cal}}\right)\right]$

CQR-MDA with nested masking in words

1. For a test point $\left(x^{(n+1)}, m^{(n+1)}\right)$:
1.1 Set $\tilde{m}^{(k)}=\max \left(m^{(k)}, m^{(n+1)}\right)$ for k in the calibration set
1.2 Impute the new calibration set
1.3 For each augmented calibration point k :
1.3.1 Get its score
1.3.2 Impute-then-predict on the augmented test point $\left(x^{(n+1)}, \tilde{m}^{(k)}\right)$, giving: $\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)$ and $\hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)$
1.3.3 Compute the corrected prediction interval:

$$
\left[\hat{q}_{\text {inf }}\left(\tilde{x}^{(n+1), k}\right)-e^{(k)} ; \hat{q}_{\text {sup }}\left(\tilde{x}^{(n+1), k}\right)+e^{(k)}\right]:=\left[z_{\text {inf }}^{(k)} ; z_{\text {sup }}^{(k)}\right]
$$

1.4 Compute the quantiles $Q_{\tilde{\alpha}}\left(\left\{z_{\text {inf }}^{(k)}\right\}_{k \in \mathrm{Cal}}\right)$ and $Q_{1-\tilde{\alpha}}\left(\left\{z_{\text {sup }}^{(k)}\right\}_{k \in \mathrm{Cal}}\right)$
1.5 Predict $\left[Q_{\tilde{\alpha}}\left(\left\{z_{\text {inf }}^{(k)}\right\}_{k \in \text { Cal }}\right) ; Q_{1-\tilde{\alpha}}\left(\left\{z_{\text {sup }}^{(k)}\right\}_{k \in \text { Cal }}\right)\right]$

Summary of CP-MDA

Towards asymptotic individualized coverage

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote
$g_{\beta, \Phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-g \circ \Phi\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]:=\mathcal{R}_{\beta, \phi}(g)$.

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote
$g_{\beta, \Phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-g \circ \Phi\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: argmin $\mathbb{E}\left[\rho_{\beta}\left(Y-f\left(X_{\text {obs }(\mathrm{M})}, M\right)\right)\right.$ (informal).

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote
$g_{\beta, \Phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-g \circ \Phi\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: $\underset{f}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-f\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]$ (informal). f

Proposition (Pinball-consistency of an universal learner)
For almost all \mathcal{C}^{∞} imputation function Φ, the function $g_{\beta, \Phi}^{*} \circ \Phi$ is Bayes optimal for the pinball-risk of level β.

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote
$g_{\beta, \Phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-g \circ \Phi\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: $\underset{f}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-f\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]$ (informal).
Proposition (Pinball-consistency of an universal learner)
For almost all \mathcal{C}^{∞} imputation function Φ, the function $g_{\beta, \Phi}^{*} \circ \Phi$ is Bayes optimal for the pinball-risk of level β.
\hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.
Denote
$g_{\beta, \Phi}^{*} \in \underset{g: \mathbb{R}^{d} \rightarrow \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-g \circ \Phi\left(X_{\mathrm{obs}(\mathrm{M})}, M\right)\right)\right]:=\mathcal{R}_{\beta, \phi}(g)$.
Comparison with: $\underset{f}{\operatorname{argmin}} \mathbb{E}\left[\rho_{\beta}\left(Y-f\left(X_{\text {obs }(\mathrm{M})}, M\right)\right)\right]$ (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all \mathcal{C}^{∞} imputation function Φ, the function $g_{\beta, \Phi}^{*} \circ \Phi$ is Bayes optimal for the pinball-risk of level β.
\hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).

Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all \mathcal{C}^{∞} imputation function Φ, if $F_{Y \mid\left(X_{\text {obs }(\mathrm{M})}, M\right)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.

Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all \mathcal{C}^{∞} imputation function Φ, if $F_{Y \mid\left(X_{\text {obs }(\mathrm{M})}, M\right)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.
$\hookrightarrow \mathbb{P}\left(Y \in \widehat{C}_{\alpha}(x) \mid X=x, M=m\right) \geq 1-\alpha$ for any $m \in \mathcal{M}$ and any
$x \in \mathbb{R}^{d}$, asymptotically with a super quantile learner.

Settings of the experiments

Some settings

- Imputation by iterative ridge (\sim conditional expectation)

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
- MCAR missing values, with probability 20%

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
- MCAR missing values, with probability 20%
- 100 repetitions

Some settings

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
- MCAR missing values, with probability 20%
- 100 repetitions
- Various test sets

$d=3$

Data generation

$$
\begin{aligned}
& (X, Y) \in \mathbb{R}^{3} \times \mathbb{R} . \\
& Y=\beta X+\varepsilon \\
& \text { with } \varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1) \text { and } \\
& \left(X_{1}, X_{2}, X_{3}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0.8 & 0.8 \\
0.8 & 1 & 0.8 \\
0.8 & 0.8 & 1
\end{array}\right)\right) .
\end{aligned}
$$

Data generation

$(X, Y) \in \mathbb{R}^{3} \times \mathbb{R}$.
$Y=\beta X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1)$ and
$\left(X_{1}, X_{2}, X_{3}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{ccc}1 & 0.8 & 0.8 \\ 0.8 & 1 & 0.8 \\ 0.8 & 0.8 & 1\end{array}\right)\right)$.
All components of X each have a probability 0.2 of being missing, Completely At Random.

Simulation settings

- Method: CQR
- Basemodel: neural network
- 200 repetitions
- train size of 250 points
- calibration size of 250 points
- test size of 2000 points
$d=10$, with missing data augmentation

Data generation

$(X, Y) \in \mathbb{R}^{10} \times \mathbb{R}$.
$Y=\beta X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1,3,-0.5,-1,0.3,1.7,0.4,-0.3)$
and $\left(X_{1}, \cdots, X_{10}\right) \sim \mathcal{N}\left(\left(\begin{array}{c}1 \\ \vdots \\ \vdots \\ 1\end{array}\right),\left(\begin{array}{cccc}1 & 0.8 & \cdots & 0.8 \\ 0.8 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0.8 \\ 0.8 & \cdots & 0.8 & 1\end{array}\right)\right)$.

Data generation

$(X, Y) \in \mathbb{R}^{10} \times \mathbb{R}$.
$Y=\beta X+\varepsilon$
with $\varepsilon \sim \mathcal{N}(0,1), \beta=(1,2,-1,3,-0.5,-1,0.3,1.7,0.4,-0.3)$
and $\left(X_{1}, \cdots, X_{10}\right) \sim \mathcal{N}\left(\left(\begin{array}{c}1 \\ \vdots \\ \vdots \\ 1\end{array}\right),\left(\begin{array}{cccc}1 & 0.8 & \cdots & 0.8 \\ 0.8 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0.8 \\ 0.8 & \cdots & 0.8 & 1\end{array}\right)\right)$.
All components of X each have a probability 0.2 of being missing, Completely At Random.

Synthetic experiments (Gaussian linear model, $d=10$)

Results on the worst group

Results on the best group

Semi-synthetic experiments with CQR-MDA-Nested

Semi-synthetic experiments with the CQR-MDA-Nested

Semi-synthetic experiments with the CQR-MDA-Nested

Semi-synthetic experiments with the CQR-MDA-Nested

Semi-synthetic experiments with the CQR-MDA-Nested

TraumaBase

Data set description i

- Age: the age of the patient (no missing values);
- Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66% missing values);
- Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82\% missing values);
- VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);
- RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37% missing values);

Data set description if

- SI: the shock index. It indicates the level of occult shock based on heart rate (HR) and systolic blood pressure (SBP), that is $S I=\frac{H R}{S B P}$, upon arrival at hospital $(2.09 \%$ missing values);
- HR: the heart rate measured upon arrival of hospital (1.62\% missing values).

Results with CQR-MDA-Nested

[^0]: ${ }^{1}$ Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B

[^1]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^2]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^3]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^4]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^5]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^6]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^7]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^8]: ${ }^{2}$ Rubin (1976), Inference and missing data, Biometrika

[^9]: ${ }^{1}$ Vovk et al. (2005), Algorithmic Learning in a Random World
 ${ }^{2}$ Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
 ${ }^{3}$ Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

[^10]: ${ }^{1}$ Vovk et al. (2005), Algorithmic Learning in a Random World
 ${ }^{2}$ Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
 ${ }^{3}$ Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

[^11]: ${ }^{1}$ Vovk et al. (2005), Algorithmic Learning in a Random World
 ${ }^{2}$ Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
 ${ }^{3}$ Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

[^12]: ${ }^{1}$ Vovk et al. (2005), Algorithmic Learning in a Random World
 ${ }^{2}$ Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
 ${ }^{3}$ Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

[^13]: ${ }^{1}$ Vovk et al. (2005), Algorithmic Learning in a Random World
 ${ }^{2}$ Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
 ${ }^{3}$ Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

