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Motivation: critical medical care



TraumaBase®: decision support for trauma patients

• More than 30 000 trauma patients

• 30 hospitals

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of platelets upon arrival at hospital, given 7

covariates chosen by medical doctors.

These covariates are not always observed.

1 / 39



TraumaBase®: decision support for trauma patients

• More than 30 000 trauma patients

• 30 hospitals

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of platelets upon arrival at hospital, given 7

covariates chosen by medical doctors.

These covariates are not always observed.

1 / 39



TraumaBase®: decision support for trauma patients

• More than 30 000 trauma patients

• 30 hospitals

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of platelets upon arrival at hospital, given 7

covariates chosen by medical doctors.

These covariates are not always observed.

1 / 39



Missing values: ubiquitous in data science pratice

Y X1 X2 X3 X4 X5 X6

22.42 0.55 0.67 0.03 0.75 0.05 0.05

8.26 0.72 0.18 0.55 0.05 0.73 0.50

19.41 0.60 0.58 NA NA NA 0.40

19.75 0.54 0.43 0.96 0.77 0.06 0.66

7.32 NA 0.19 NA 0.02 0.83 0.04

13.55 0.65 0.69 0.50 0.15 NA 0.87

20.75 0.43 0.74 0.61 0.72 0.52 0.35

9.26 0.89 NA 0.84 0.01 0.73 NA

9.68 0.963 0.45 0.65 0.04 0.06 NA
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If each entry has a probability 0.01 of being missing:

d = 6 → ≈ 94% of rows kept

d = 300 → ≈ 5% of rows kept

One of the ironies of Big Data is that missing data play an ever

more significant role.1

1Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B
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Handling missing values depends on pattern and mechanism

• (X ,Y ) ∈ Rd ×R random variables.

• M ∈ {0, 1}d is defined as Mj = 1 ⇔ Xj is missing.

M is called the mask or the missing pattern.

Example

We observe . Then .

There are 2d patterns (statistical and computational challenges).

• Three mechanisms2 can generate missing values.

↪→ Missing Completely At Random (MCAR):

P(M = m|X ) = P(M = m) for all m ∈ {0, 1}d . M ⊥⊥ X ,

missingness does not depend on the variables.

2Rubin (1976), Inference and missing data, Biometrika
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Supervised learning with missing values

Impute-then-regress procedures are widely used (Le Morvan et al., 2021).

1. Replace NA using an imputation function (e.g. the mean),

noted ϕ.

2. Train your algorithm (Random Forest, Neural Nets, etc.) on

the imputed data:

ϕ
(
x
(k)

obs(m(k))
,m(k)

)
︸ ︷︷ ︸

imputed x (k)

, y (k)


n

k=1

.

Le Morvan et al. (2021) show that for any deterministic

imputation and universal learner this procedure is

Bayes-consistent.

Le Morvan et al. (2021), What’s a good imputation to predict with missing values?,

NeurIPS
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Back to predicting the levels of platelets

• Challenging task: Jiang et al. (2022) achieved an average

relative prediction error (∥ŷ − y∥2/∥y∥2) no lower than 0.23

• Crucial task: high-stakes decision-making problem

↪→ High need for quantifying the predictive uncertainty.
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relative prediction error (∥ŷ − y∥2/∥y∥2) no lower than 0.23

• Crucial task: high-stakes decision-making problem

↪→ High need for quantifying the predictive uncertainty.

5 / 39



Beyond point prediction?



Objective

• Predict an unseen point Y (n+1) at X (n+1) with confidence

• Miscoverage level α ∈ [0, 1]

▶ Build a predictive interval Cα such that:

P
{
Y (n+1) ∈ Cα

(
X (n+1)

)}
≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative.

6 / 39



Split conformal prediction1,2,3: toy example

0 1 2 3 4 5
x

−2

0

2

y

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split conformal prediction1,2,3: training step

0 2 4
x

−2

0

2

y

▶ Learn µ̂

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split conformal prediction1,2,3: calibration step

0 2 4
x

−2

0

2

y

▶ Predict with µ̂

▶ Get the residuals

ε̂(k)

▶ Compute the

(1−α)×(1+ 1
#Cal)

empirical quantile

of the |ε̂(k)|, noted
Q1−α̃

(
|ε̂(k)|

)
1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split conformal prediction1,2,3: prediction step

0 2 4
x

−2

0

2

y

▶ Predict with µ̂

▶ Build Ĉα(x):

[µ̂(x)±
Q1−α̃

(
|ε̂(k)|

)
]

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Theory on SCP

Papadopoulos et al. (2002); Lei et al. (2018) prove that:

• given any regression function µ̂

• for any (finite) sample size n

• if the (X (k),Y (k)) are exchangeable

then:

P
(
Y ∈ Ĉα (X )

)
≥ 1− α.

If additionally the scores |ε̂k | are almost surely distinct:

P
(
Y ∈ Ĉα (X )

)
≤ 1− α+

1

1 +#Cal
.
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Split conformal prediction: summary

Split conformal prediction is simple to compute and works:

• any regression algorithm (neural nets, random forest...);

• distribution-free as long as the data is exchangeable;

↪→ the scores need to be exchangeable (but then it would not

work with any regression algorithm)

• finite sample.
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Split conformal prediction1,2,3: prediction step

0 2 4
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0

2

y

▶ Predict with µ̂
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Conformalized Quantile Regression (Romano et al., 2019)

0 1 2 3 4 5
x

−4

−2

0

2

4

y

1
Randomly split the data to obtain a proper training set and a

calibration set. Keep the test set.

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (Romano et al., 2019)

0 2 4
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0
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1

▶ Learn q̂inf and q̂sup

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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▶ Predict with q̂inf and q̂sup

▶ Get the scores e(k)

▶ Compute the

(1− α)× (1 + 1
#Cal)

empirical quantile of the

e(k), noted Q1−α̃ (e)

↪→ e(k) := max
{
q̂inf

(
x (k)

)
− y (k), y (k) − q̂sup

(
x (k)

)}

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
14 / 39



Conformalized Quantile Regression (Romano et al., 2019)

0 2 4
x

−4

−2

0

2

4

y

1

▶ Predict with q̂inf and q̂sup

▶ Build Ĉα(x):

[q̂inf(x)− Q1−α̃ (e) ,

q̂sup(x) + Q1−α̃ (e)]

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
14 / 39



Theory on CQR

Romano et al. (2019) prove that:

• given any quantile regression functions q̂inf and q̂sup

• for any (finite) sample size n

• if the (X (k),Y (k)) are exchangeable

then:

P
(
Y ∈ Ĉα (X )

)
≥ 1− α

If additionally the scores e(k) are almost surely distinct:

P
(
Y ∈ Ĉα (X )

)
≤ 1− α+

1

1 +#Cal
.

Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformal prediction with missing values



Impute-then-regress+conformalization is marginally valid

To apply conformal prediction we need exchangeable data.

Lemma (Exchangeability after imp., Zaffran et al., 2023)

Assume
(
X (k),M(k),Y (k)

)n
k=1

are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation

function ϕ:(
ϕ
(
X

(k)

obs(M(k))
,M(k)

)
,Y (k)

)n

k=1
are exchangeable.

⇒ Conformal prediction applied on an imputed data set still enjoys

marginal guarantees:

P
(
Y ∈ Ĉα

(
Xobs(M),M

))
≥ 1− α.

Even if the imputation is not accurate, the guarantee will hold.
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CQR performances on an illustrative example

Y = βTX + ε,

with β = (1, 2,−1)T , ε ⊥⊥ X and X and ε are Gaussian.
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Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model (Y = βTX + ε)

generalizes:

Proposition (Oracle intervals under the Gaussian lin. mod.)

L∗
α(m) = 2× q

N (0,1)
1−α/2 ×

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε .

• Even with an homoskedastic noise, missingness generates

heteroskedasticity

• The uncertainty increases when missing values are associated

with larger regression coefficients (i.e. the most predictive

variables)

• The uncertainty increases when there are more missing values
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CQR is not enough (and spoiler)
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Missing data augmentation



Goal: validity conditionally to the mask

Goal: for any m ∈ M ⊂ {0, 1}d :

P
(
Y ∈ Ĉα

(
Xobs(M),M

)
|M = m

)
≥ 1− α.
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Issue during the calibration step
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▶ Predict with q̂inf and q̂sup

▶ Get the scores e(k)

▶ Compute the

(1− α)× (1 + 1
#Cal)

empirical quantile of the

e(k), noted Q1−α̃ (e)
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Missing data augmentation of the calibration set

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

0 1

Calibration set used Initial calibration set

e(k) = max
{
q̂inf

(
x̃ (k)

)
− y (k), y (k) − q̂sup

(
x̃ (k)

)}
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CQR-MDA with exact masking in words

1. Split your training set into a proper training set and

calibration set

2. Train your imputation function on the proper training set

3. Impute the proper training set

4. Train your quantile regressors on the imputed proper

training set

5. For a test point
(
x (n+1),m(n+1)

)
:

5.1 For each j ∈ J1, dK such that m
(n+1)
j = 1, set m̃

(k)
j = 1 (i.e. set

x̃
(k)
j = NA) for k in the calibration set such that

m(k) ⊂ m(n+1)

5.2 Impute the new calibration set

5.3 Compute the calibration correction

5.4 Impute the test point

5.5 Predict with the quantile regressors and the correction

previously obtained

23 / 39
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Conditional validity

Theorem (Zaffran et al., 2023)

If the data is exchangeable and MCAR, then for almost all

imputation function the proposed methodology is such that for

any m ∈ M ⊂ {0, 1}d :

P
(
Y ∈ Ĉα

(
Xobs(M),M

)
|M = m

)
≥ 1− α,

and if additionally the scores are almost surely distinct:

P
(
Y ∈ Ĉα

(
Xobs(M),M

)
|M = m

)
≤ 1− α+

1

1 +#Calm
.
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Empirical coverages
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Empirical lengths

M
ar
gi
na
l

No
m
iss
in
g
va
lu
es

X 1
m
iss
in
g

X 2
m
iss
in
g

X 3
m
iss
in
g

X 1
an
d
X 2

m
iss
in
g

X 1
an
d
X 3

m
iss
in
g

X 2
an
d
X 3

m
iss
in
g

3

4

5

6

7

A
ve
ra
ge

le
n
gt
h

1

26 / 39



CP-MDA-Exact reminder
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Calibration set used Initial calibration set
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What if we kept all individuals?
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Calibration set usedInitial calibration set
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What if we kept all individuals?

0 2 4
x

−4
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y

1

▶ Predict with q̂inf and q̂sup

▶ Build Ĉα̂(x):

[q̂inf(x)− Q1−α̃ (e) ,

q̂sup(x) + Q1−α̃ (e)]
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Idea: modify the test point accordingly
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Test point
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0 1

Calibration set used

Initial calibration set 3 1

3 1
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and

Temporary test points
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CQR-MDA with nested masking in words

1. For a test point
(
x (n+1),m(n+1)

)
:

1.1 For each j ∈ J1, dK such that m
(n+1)
j = 1, set m̃

(k)
j = 1 (i.e. set

x̃
(k)
j = NA) for k in the calibration set such that

m(k) ⊂ m(n+1)

Set m̃(k) = max(m(k),m(n+1)) for k in the

calibration set

1.2 Impute the new calibration set

1.3 For each augmented calibration point k:

1.3.1 Get its score e(k)

1.3.2 Impute-then-predict on the augmented test point

(x (n+1), m̃(k)), giving: q̂inf(x̃
(n+1),k) and q̂sup(x̃

(n+1),k)

1.3.3 Compute the corrected prediction interval:

[q̂inf(x̃
(n+1),k)− e(k); q̂sup(x̃

(n+1),k) + e(k)] :=
[
z
(k)
inf ; z

(k)
sup

]

1.4 Compute the quantiles Qα̃({z (k)inf }k∈Cal) and

Q1−α̃({z (k)sup}k∈Cal)

1.5 Predict [Qα̃({z (k)inf }k∈Cal);Q1−α̃({z (k)sup}k∈Cal)]
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Summary of CP-MDA

Test point

Initial calibration set

CP-MDA with exact masking:
calibration set

CP-MDA with nested masking:-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

-1 1

4 2

5

0 1

-1 1

4 2

0 1

and

3 1

3 1

3

3 1

calibration set temporary test points
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Towards asymptotic individualized coverage



Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.

Denote

g∗
β,Φ ∈ argmin

g :Rd→R
E
[
ρβ(Y − g ◦ Φ(Xobs(M),M))

]
:= Rβ,ϕ(g).

Comparison with: argmin
f

E
[
ρβ(Y − f (Xobs(M),M))

]
(informal).

Proposition (Pinball-consistency of an universal learner)

For almost all C∞ imputation function Φ, the function g∗
β,Φ ◦Φ is

Bayes optimal for the pinball-risk of level β.

↪→ any universally consistent algorithm for quantile regression

trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).
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Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all C∞ imputation

function Φ, if FY |(Xobs(M),M) is continuous, a universally

consistent quantile regressor trained on the imputed data set

yields asymptotic conditional coverage.

↪→ P(Y ∈ Ĉα(x)|X = x ,M = m) ≥ 1− α for any m ∈ M and any

x ∈ Rd , asymptotically with a super quantile learner.
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Experimental results



Some settings

• Imputation by iterative ridge (∼ conditional expectation)

• Concatenate the mask in the features

• Neural network, fitted to minimize the pinball loss

• (Semi)-synthetic experiments:

◦ MCAR missing values, with probability 20%

◦ 100 repetitions

◦ Various test sets
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Synthetic experiments (Gaussian linear model, d = 10)
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Before more experiments, visualisation
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Semi-synthetic experiments
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Real data experiment: back to critical care medicine
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Conclusion



Take-home-messages

• CP marginal guarantees hold on the imputed data set.

• Missingness introduces additional heteroskedasticity, creating

a need for quantile regression based methods.

• CQR fails to attain coverage conditional on the missing

pattern.

• Missing data augmentation is the first method to output

predictive intervals with missing values.

• Missing data augmentation attains conditional coverage with

respect to the missing pattern (in MCAR setting).
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Thank you!
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d = 3



Data generation

(X ,Y ) ∈ R3 ×R.
Y = βX + ε

with ε ∼ N (0, 1), β = (1, 2,−1) and

(X1,X2,X3) ∼ N
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All components of X each have a probability 0.2 of being missing,

Completely At Random.
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Simulation settings

• Method: CQR

• Basemodel: neural network

• 200 repetitions

◦ train size of 250 points

◦ calibration size of 250 points

◦ test size of 2000 points



d = 10, with missing data augmentation



Data generation

(X ,Y ) ∈ R10 ×R.
Y = βX + ε

with ε ∼ N (0, 1), β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3)

and (X1, · · · ,X10) ∼ N
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Simulation settings

• Method: CQR

• Basemodel: neural network

• Imputation: iterative (≈ conditional expectation)

• Mask as features: yes

• 100 repetitions

◦ train size varies

◦ calibration size of 1000 points

◦ test size of 2000 points



Results on the best group
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TraumaBase



Data set description i

• Age: the age of the patient (no missing values);

• Lactate: the conjugate base of lactic acid, upon arrival at

the hospital (17.66% missing values);

• Delta hemo: the difference between the hemoglobin upon

arrival at hospital and the one in the ambulance (23.82%

missing values);

• VE: binary variable indicating if a Volume Expander was

applied in the ambulance. A volume expander is a type of

intravenous therapy that has the function of providing volume

for the circulatory system (2.46% missing values);

• RBC: a binary index which indicates whether the transfusion of

Red Blood Cells Concentrates is performed (0.37% missing

values);



Data set description ii

• SI: the shock index. It indicates the level of occult shock

based on heart rate (HR) and systolic blood pressure (SBP),

that is SI = HR
SBP , upon arrival at hospital (2.09% missing

values);

• HR: the heart rate measured upon arrival of hospital (1.62%

missing values).
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