Introduction to Conformal Prediction Extension to missing values

Margaux Zaffran

Seminar Statistics and Optimisation – Institut de Mathématiques de Toulouse October 24, 2023

Who am I?

- 3rd (last) year statistics PhD Student, @ INRIA & École Polytechnique (Paris)
- Funded by Électricité de France (French main electricity producer and supplier)
- My advisors:

Aymeric Dieuleveut École Polytechnique

Olivier Féron EDF R&D FiME

Yannig Goude EDF R&D LMO

nce de la

Julie Josse PreMeDICaL INRIA

- Research interests:
 - $\circ~$ Distribution-free uncertainty quantification
 - $\circ~$ Time series data
 - $\circ~$ Missing values
 - Real life applications (energy, environmental, medical and societal domains)

Conformal Prediction with Missing Values

Aymeric Dieuleveut École Polytechnique Paris - France

Yaniv Romano Technion - Israel Institute of Technology *Haifa - Israel*

Introduction to (Split) Conformal Prediction

Standard Split Conformal Prediction for Mean-Regression Improving Adaptiveness: Conformalized Quantile Regression Generalized SCP Framework

Quantifying Predictive Uncertainty with Missing Values

Setting

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^{n}$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha, \tag{1}$$

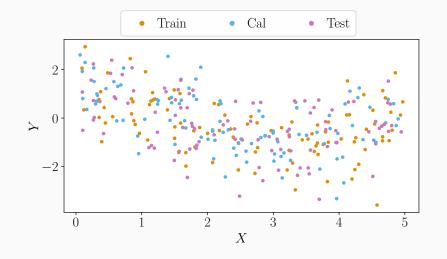
and C_{α} should be as small as possible, in order to be informative. For example: $\alpha = 0.1$ and obtain a 90% coverage interval

- Construction of the predictive intervals should be
 - agnostic to the model
 - agnostic to the data distribution
 - valid in finite samples

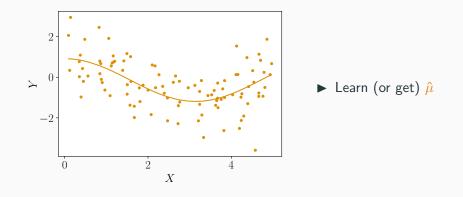
Introduction to (Split) Conformal Prediction Standard Split Conformal Prediction for Mean-Regression Improving Adaptiveness: Conformalized Quantile Regression Generalized SCP Framework

Quantifying Predictive Uncertainty with Missing Values

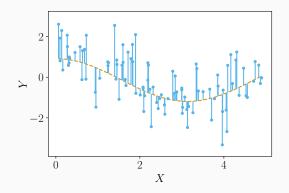
Split Conformal Prediction (SCP)^{1,2,3}: toy example



¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

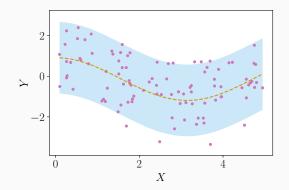


¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B



- ▶ Predict with $\hat{\mu}$
- ► Get the |residuals|, a.k.a. scores ${S^{(k)}}_{k \in Cal}$
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B



Predict with \$\hu\$
Build \$\hu\$
\$\hu\$<

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

Definition (Exchangeability)

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of $[\![1, n]\!]$ we have:

$$\mathcal{L}\left(\left(X^{(1)}, Y^{(1)}\right), \dots, \left(X^{(n)}, Y^{(n)}\right)\right) \\ = \mathcal{L}\left(\left(X^{(\sigma(1))}, Y^{(\sigma(1))}\right), \dots, \left(X^{(\sigma(n))}, Y^{(\sigma(n))}\right)\right)$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

Examples of exchangeable sequences

- i.i.d. samples
- $\bullet\,$ The components of ${\cal N}\,$

$$\begin{pmatrix} m \\ \vdots \\ \vdots \\ m \end{pmatrix}, \begin{pmatrix} \sigma^2 & & \\ & \ddots & \gamma^2 & \\ & \gamma^2 & \ddots & \\ & & & \sigma^2 \end{pmatrix} \end{pmatrix}$$

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.). SCP applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S^{(k)}\}_{k \in Cal}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

X Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$

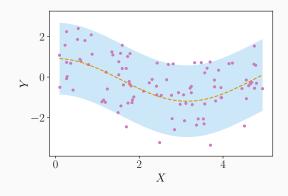
Introduction to (Split) Conformal Prediction

Standard Split Conformal Prediction for Mean-Regression

Improving Adaptiveness: Conformalized Quantile Regression

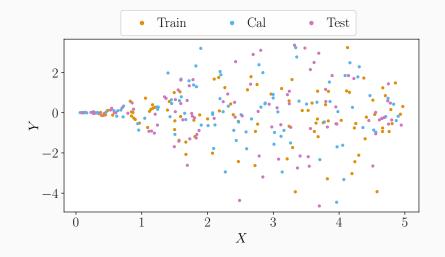
Generalized SCP Framework

Quantifying Predictive Uncertainty with Missing Values

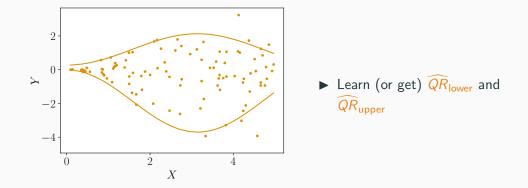


Predict with \$\httype{\mu}\$
Build \$\hat{C}_{\alpha}(x)\$: [\$\httype{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\$]

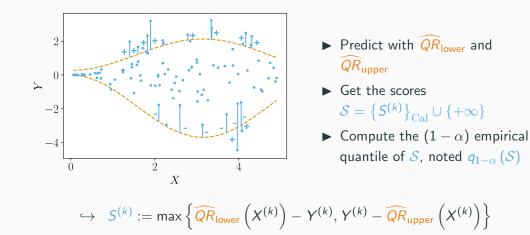
Conformalized Quantile Regression (CQR)⁴



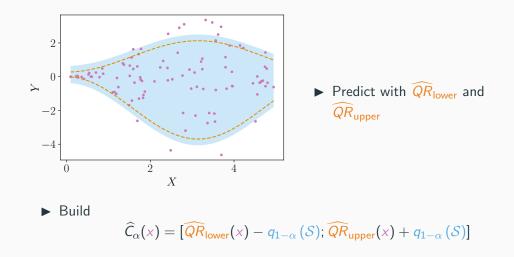
⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS



⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS



⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS



⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

Introduction to (Split) Conformal Prediction

Standard Split Conformal Prediction for Mean-Regression Improving Adaptiveness: Conformalized Quantile Regression Generalized SCP Framework

Quantifying Predictive Uncertainty with Missing Values

Generalization: SCP is defined by the conformity scores

- 1. Split randomly the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Train your algorithm on the proper training set to obtain \hat{A}
- 3. On the calibration set, obtain #Cal + 1 conformity scores

$$\mathcal{S} = \{S^{(k)} = \mathbf{s}\left(X^{(k)}, Y^{(k)}\right), k \in \operatorname{Cal}\} \cup \{+\infty\}$$

Ex 1: $\mathbf{s}(x, y) = |\hat{A}(x) - y|$ in mean-regression with standard scores Ex 2: $\mathbf{s}(x, y) = \max\left(\widehat{QR}_{\alpha/2}(x) - y, y - \widehat{QR}_{1-\alpha/2}(x)\right)$ in CQR

- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point $X^{(n+1)}$, return

$$\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) := \{y \text{ such that } \mathbf{s}\left(\widehat{A}\left(X^{(n+1)}\right), y\right) \leq q_{1-\alpha}\left(\mathcal{S}\right)\}$$

 \hookrightarrow The definition of the conformity scores is crucial, as they incorporate almost all the information: data + underlying model

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.). SCP applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(X^{(n+1)})$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\{S^{(k)}\}_{k \in Cal}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}$$

X Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$

SCP: what choices for the regression scores?

	Standard SCP	Locally weighted SCP	CQR
	Vovk et al. (2005)	Lei et al. (2018)	Romano et al. (2019)
s (X, Y)	$ \hat{A}(X) - Y $	$\frac{ \hat{A}(X) - Y }{\hat{\rho}(X)}$	$\max(\widehat{QR}_{\alpha/2}(X) - Y,$
$\widehat{C}_{\alpha}(x)$	$\left[\hat{A}(x) \pm q_{1-\alpha}\left(\mathcal{S}\right)\right]$	$\left[\hat{A}(x) \pm q_{1-\alpha} (S)\hat{\rho}(x)\right]$	$Y - \widehat{QR}_{1-\alpha/2}(X))$ $[\widehat{QR}_{\alpha/2}(x) - q_{1-\alpha}(S);$
$\mathbf{C}_{\alpha}(\mathbf{x})$	$\left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\left[\left(\left(x \right) + \left(q \right) - \alpha \left(c \right) \right) \right]$	$\widehat{QR}_{1-\alpha/2}(x) + q_{1-\alpha}(\mathcal{S})]$
Visu.	0 2 4 X	0 2 4 X	
1	black-box around a "us-	black-box around a "usable"	adaptive
	able" prediction	prediction	
×	not adaptive	limited adaptiveness	no black-box around a "us-
			able" prediction

Split conformal prediction is simple to compute and works:

- ✓ any regression (and classification) algorithm (neural nets, random forest...);
- ✓ distribution-free as long as the data is exchangeable;
- ✓ finite sample.

× Note that the theoretical guarantee is **marginal** over the joint distribution of (X, Y), and **not conditional**. That is, there is no guarantee that for any $x \in \mathbb{R}$:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)|X^{(n+1)}=x\right\}\geq 1-\alpha.$$

Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

- 30 hospitals
- More than 30 000 trauma patients
- 4 000 new patients per year
- 250 continuous and categorical variables
 - $\hookrightarrow \mathsf{Many} \text{ useful statistical tasks}$

Predict the level of platelets upon arrival at hospital, given 7 covariates chosen by medical doctors.

These covariates are not always observed.

Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Missing values: ubiquitous in data science practice

Y	X_1	X_2	X_3	X_4	X_5	X_6
22.42	0.55	0.67	0.03	0.75	0.05	0.05
8.26	0.72	0.18	0.55	0.05	0.73	0.50
-19.41	0.60	0.58	NA	NA	NA	0.40
19.75	0.54	0.43	0.96	0.77	0.06	0.66
	NA	0.19	NA	0.02	0.83	0.04
-13.55	0.65	0.69	0.50	0.15	NA	0.87
20.75	0.43	0.74	0.61	0.72	0.52	0.35
9.26	0.89	NA	0.84	0.01	0.73	NA
9.68	0.963	0.45	0.65	0.04	0.06	<u> </u>

If each entry has a probability 0.01 of being missing:

d=6
ightarrow pprox 94% of rows kept

 $d = 300 \rightarrow \approx 5\%$ of rows kept

One of the **ironies of Big Data** is that missing data play an ever more significant role.⁵

⁵Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables.
- M ∈ {0,1}^d is defined as M_j = 1 ⇔ X_j is missing.
 M is called the mask or the missing pattern.

Example

We observe (-1, NA, NA). Then m = (0, 1, 1).

There are 2^d **patterns** (statistical and computational challenges).

• Three **mechanisms**⁶ can generate missing values.

 \hookrightarrow Missing Completely At Random (MCAR): $\mathbb{P}(M = m | X) = \mathbb{P}(M = m)$ for all $m \in \{0, 1\}^d$. $M \perp X$, missingness does not depend on the variables.

⁶Rubin (1976), Inference and missing data, Biometrika

Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

- 1. Replace NA using an imputation function ϕ (e.g. the mean).
- 2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

data:
$$\left\{ \underbrace{\phi(X^{(k)}, M^{(k)})}_{\text{imputed } X^{(k)}}, Y^{(k)} \right\}_{k=1}^{n}$$

 \hookrightarrow we consider an impute-then-regress pipeline in this work.

 \checkmark : Le Morvan et al. (2021)⁷ show that for any deterministic imputation and universal learner this procedure is Bayes-consistent.

✗: Ayme et al. (2022)⁸ show that even for very simple distributions (linear model, Gaussian noise), may suffer from curse of dimensionality.

⁷Le Morvan et al. (2021), What's a good imputation to predict with missing values?, NeurIPS

⁸Ayme et al. (2022), Near-optimal rate of consistency for linear models with missing values, ICML

Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

Experimental Results

Predictive uncertainty quantification with missing values

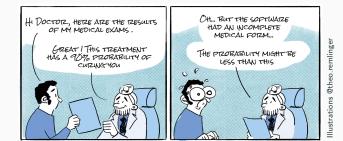
Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

2. Mask-Conditional-Validity (MCV)

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha. \quad (\mathsf{MCV})$$



16 / 34

CP is marginally valid (MV) after imputation

To apply conformal prediction we need exchangeable data.

Lemma

Assume
$$(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$$
 are *i.i.d.* (or exchangeable).

Then, for any missing mechanism, for almost all imputation function⁹ ϕ : $\left(\phi\left(X^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

 \Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees¹⁰:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)\right\}\geq 1-\alpha.$$

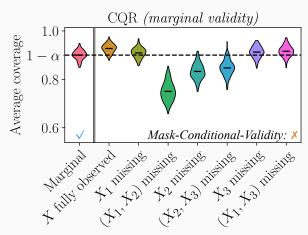
⁹Even if the imputation is not accurate, the guarantee will hold.

¹⁰The upper bound also holds under continuously distributed scores.

CQR is marginally valid on imputed data sets

$$Y = \beta^T X + \varepsilon,$$

with $\beta = (1, 2, -1)^T$, $\varepsilon \perp X$, X and ε are Gaussian.



Warning: the predictive intervals cover properly marginally, but suffer from high disparities depending on the missing patterns.

Theoretical study of the Gaussian linear model $(Y = \beta^T X + \varepsilon)$ generalizes \hookrightarrow oracle intervals: smallest predictive interval when the distribution of Y|(X, M)is known

Proposition (Oracle intervals under the Gaussian lin. mod.)

$$\mathcal{L}^*_{\alpha}(\textit{\textit{m}}) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\mathrm{mis}(\textit{m})}^{\mathcal{T}} \Sigma_{\mathrm{mis|obs}}^{\textit{m}} \beta_{\mathrm{mis}(\textit{m})} + \sigma_{\varepsilon}^2}$$

- Even with an homoskedastic noise, missingness generates heteroskedasticity
- The uncertainty increases when missing values are associated with larger regression coefficients (i.e. the most predictive variables)

Goals reminder: achieve MCV!

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV) 🗸

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

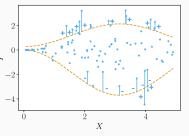
2. Mask-Conditional-Validity (MCV) X

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha. \quad (\mathsf{MCV})$$

Ilustrations @theo.remlinger

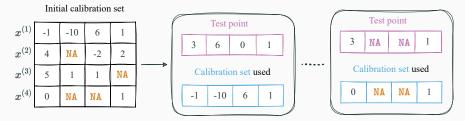
Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed \succ among all the data points, regardless of their mask!



Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set^{11} by mask is infeasible (lack of data)!



¹¹Romano et al. (2020), *With Malice Toward None: Assessing Uncertainty via Equalized Coverage*, Harvard Data Science Review

Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values

Learning with Missing Data

Conformal Prediction with Missing Values

Missing Data Augmentation

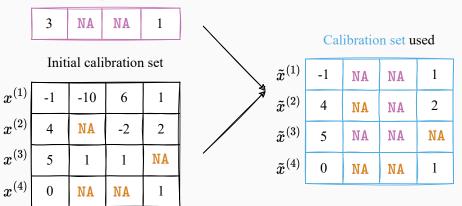
Experimental Results

Conclusion

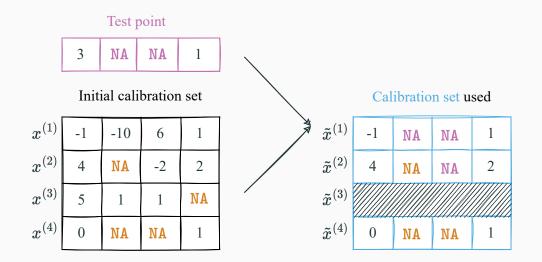
Missing Data Augmentation (MDA) of the calibration set

Idea: for each test point, modify the calibration points to mimic the test mask

Test point

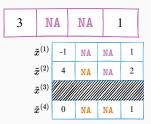


Algorithms: MDA with Exact masking or with Nested masking.



CQR-MDA with exact masking in words

- Split the training set into a proper training set and calibration set
- 2. Train the imputation function on the proper training set
- 3. Impute the proper training set
- 4. Train the quantile regressors on the imputed proper training set
- 5. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 5.1 For each $j \in \llbracket 1, d \rrbracket$ s.t. $M_j^{(n+1)} = 1$, set $\tilde{M}_j^{(k)} = 1$ for k in Cal s.t. $M^{(k)} \subset M^{(n+1)}$
 - 5.2 Impute the new calibration set
 - 5.3 Compute the calibration correction, i.e. $q_{1-\alpha}(S)$
 - 5.4 Impute the test point
 - 5.5 Predict with the quantile regressors and the correction previously obtained, $q_{1-\alpha}(S)$



Theorem (CP-MDA-Exact achieves MCV)

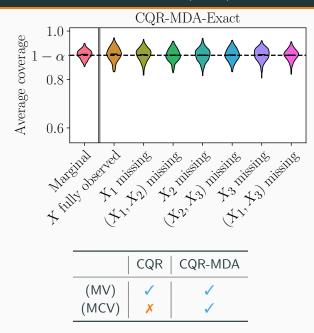
If the data is exchangeable and $M \perp (X, Y)$, then for almost all imputation function CP-MDA-Exact is such that for any $m \in \{0, 1\}^d$:

$$\mathbb{P}\left(Y\in\widehat{\mathcal{C}}_{lpha}\left(X,m
ight)|M=m
ight)\geq1-lpha,$$

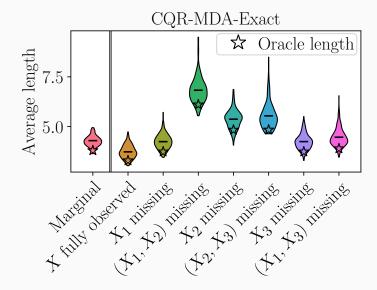
and if additionally the scores are almost surely distinct:

$$\mathbb{P}\left(Y \in \widehat{\mathcal{C}}_{\alpha}\left(X, m\right) | M = m\right) \leq 1 - \alpha + \frac{1}{1 + \# \mathrm{Cal}^{\mathrm{m}}}$$

MDA achieves Mask-Conditional-Validity (MCV), cont'd



MDA achieves Mask-Conditional-Validity in an informative way



Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values

Learning with Missing Data

Conformal Prediction with Missing Values

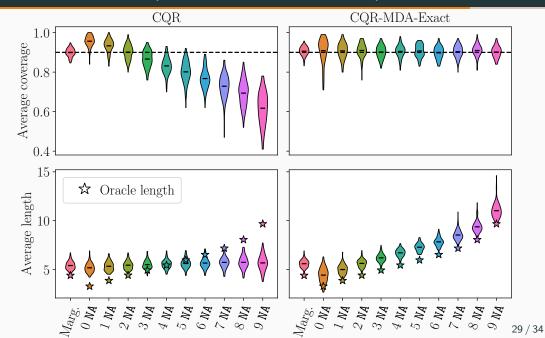
Missing Data Augmentation

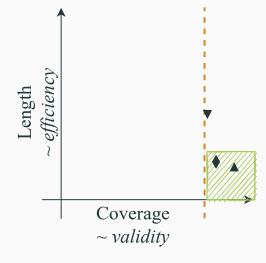
Experimental Results

Conclusion

- Imputation by iterative ridge (\sim conditional expectation)
- Concatenate the mask in the features
- Neural network, fitted to minimize the pinball loss
- (Semi)-synthetic experiments:
 - $\circ~$ MCAR missing values, with probability 20%
 - $\circ~$ 100 repetitions

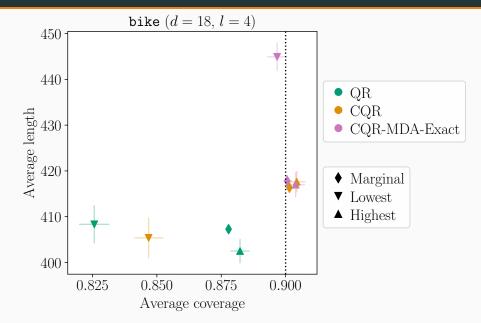
Synthetic experiments (Gaussian linear model, d = 10)



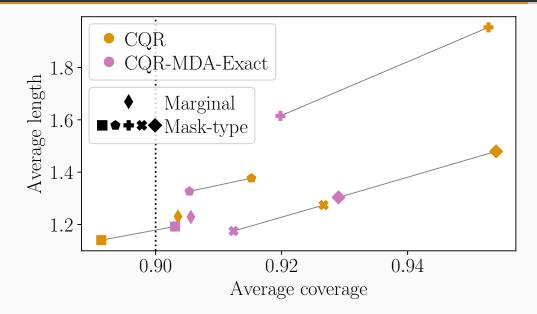


- $igstarrow: ext{marginal coverage, i.e.} \ \mathbb{P}(Y \in \hat{C}_lpha(X,M))$
- $igvee : ext{lowest coverage, i.e.} \ \min_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M=m)$
- $igstarrow : ext{highest coverage, i.e.} \ \max_{m \in \mathcal{M}} \mathbb{P}(Y \in \hat{C}_lpha(X,m) | M = m)$

Semi-synthetic experiments



Real data experiment: TraumaBase[®], critical care medicine



Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values

Conclusion

- Consistency of universal quantile learner when chained with almost any imputation function.
- CP-MDA-Nested (link to CP-MDA-Nested), an algorithm which does not discard any calibration point.

- CP marginal guarantees hold on the imputed data set.
- Missingness introduces additional heteroskedasticity, creating a need for quantile regression based methods.
- CQR fails to attain coverage conditional on the missing pattern.
- Missing data augmentation is the first method to output predictive intervals with missing values.
- Missing data augmentation attains conditional coverage with respect to the missing pattern (in MCAR setting).

Thank you! Questions? :)

- Ayme, A., Boyer, C., Dieuleveut, A., and Scornet, E. (2022). Near-optimal rate of consistency for linear models with missing values. In *ICML*.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2).
- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).

- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). Cd-split and hpd-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *ICLR*.
- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In International Conference on Artificial Intelligence and Statistics. PMLR.
- Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021). What's a good imputation to predict with missing values? *NeurIPS*.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.

References iii

- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 76(1).
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML 2002*.
- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *NeurIPS*.
- Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63(3).
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *NeurIPS*.

- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Zhu, Z., Wang, T., and Samworth, R. J. (2019). High-dimensional principal component analysis with heterogeneous missingness. arXiv.

Appendix

Informative conditional coverage as such is impossible

• Impossibility results

 \hookrightarrow Lei and Wasserman (2014); Vovk (2012); Barber et al. (2021)

Without distribution assumption, in finite sample, a perfectly conditionally valid \widehat{C}_{α} is such that $\mathbb{P}\left\{ \operatorname{mes}\left(\widehat{C}_{\alpha}(x)\right) = \infty \right\} = 1$ for any non-atomic x.

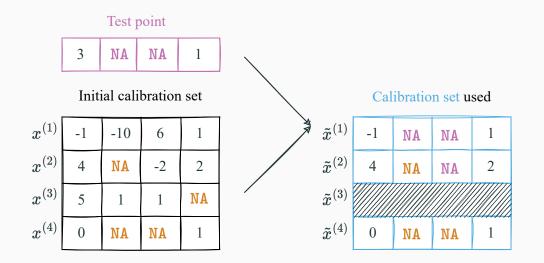
• Approximate conditional coverage

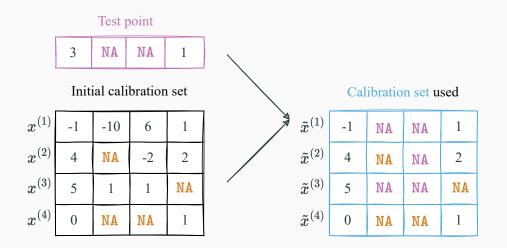
 \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha} | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

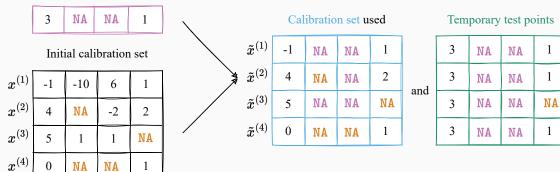
Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

CP-MDA-Nested







CQR-MDA with nested masking in words

- 1. For a test point $(X^{(n+1)}, M^{(n+1)})$:
 - 1.1 Set $\tilde{M}^{(k)} = \max(M^{(k)}, M^{(n+1)})$ for k in the calibration set
 - 1.2 Impute the new calibration set
 - 1.3 For each augmented calibration point k:
 - 1.3.1 Get its score $S^{(k)}$

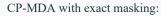
 $\begin{array}{c} \begin{array}{c} \text{Impute-then-predict on the augmented test point} \\ 1.3.2 & (X^{(n+1)}, \tilde{M}^{(k)}), \text{ giving:} \quad \widehat{QR}_{\alpha/2}(\tilde{X}^{(n+1),k}) \text{ and} \\ & \widehat{QR}_{1-\alpha/2}(\tilde{X}^{(n+1),k}) \end{array}$

1.3.3 Compute the corrected prediction interval: $[\widehat{QR}_{\alpha/2}(\tilde{X}^{(n+1),k}) - S^{(k)}; \widehat{QR}_{1-\alpha/2}(\tilde{X}^{(n+1),k}) + S^{(k)}] := [Z_{inf}^{(k)}; Z_{sup}^{(k)}]$ 1.4 Compute the quantiles $q_{\alpha}(\{Z_{inf}^{(k)}\}_{k\in\text{Cal}})$ and $q_{1-\alpha}(\{Z_{sup}^{(k)}\}_{k\in\text{Cal}})$ 1.5 Predict $[q_{\alpha}(\{Z_{inf}^{(k)}\}_{k\in\text{Cal}}); q_{1-\alpha}(\{Z_{sup}^{(k)}\}_{k\in\text{Cal}})]$

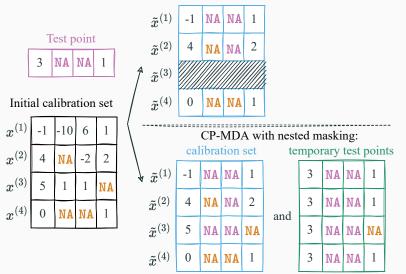
	3	NA	A N		A		1
$ ilde{x}^{(1)}$	-1	NA	1	IA	1	1	
$ ilde{x}^{(2)}$	4	NA	1	IA	2		
$ ilde{x}^{(3)}$	5	NA	1	IA	NA		
$ ilde{x}^{(4)}$	0	NA	1	IA	1		

3	NA	NA	1
3	NA	NA	1
3	NA	NA	NA
3	NA	NA	1

Summary of CP-MDA



calibration set



Towards asymptotic individualized coverage

Let Φ be an imputation function chosen by the user.

Denote
$$g_{\beta,\Phi}^* \in \underset{g:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E} \left[\rho_{\beta}(Y - g \circ \Phi(X, M)) \right] := \mathcal{R}_{\beta,\phi}(g).$$

Comparison with: argmin $\mathbb{E}\left[\rho_{\beta}(Y - f(X, M))\right]$ (informal).

Proposition (Pinball-consistency of an universal learner)

For almost all C^{∞} imputation function Φ , the function $g^*_{\beta,\Phi} \circ \Phi$ is Bayes optimal for the pinball-risk of level β .

 \hookrightarrow any universally consistent algorithm for quantile regression trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).

Corollary

For any missing mechanism, for almost all C^{∞} imputation function Φ , if $F_{Y|(X_{obs(M)},M)}$ is continuous, a universally consistent quantile regressor trained on the imputed data set yields asymptotic conditional coverage.

 $\hookrightarrow \mathbb{P}(Y \in \widehat{C}_{\alpha}(x) | X = x, M = m) \ge 1 - \alpha$ for any $m \in \mathcal{M}$ and any $x \in \mathbb{R}^d$, asymptotically with a super quantile learner.

$$(X, Y) \in \mathbb{R}^{3} \times \mathbb{R}.$$

$$Y = \beta^{T} X + \varepsilon$$

with $\varepsilon \sim \mathcal{N}(0, 1), \ \beta = (1, 2, -1)^{T} \text{ and}$

$$(X_{1}, X_{2}, X_{3}) \sim \mathcal{N}\left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 & 0.8\\0.8 & 1 & 0.8\\0.8 & 0.8 & 1 \end{pmatrix}\right)$$

All components of X each have a probability 0.2 of being missing, Completely At Random.

- Method: CQR
- Basemodel: neural network
- 200 repetitions
 - $\circ\,$ train size of 250 points
 - $\circ\,$ calibration size of 250 points
 - \circ test size of 2000 points

d = 10, with missing data augmentation

$$(X, Y) \in \mathbb{R}^{10} \times \mathbb{R}.$$

$$Y = \beta^{T} X + \varepsilon$$

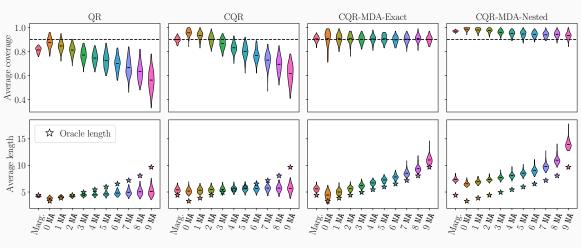
with $\varepsilon \sim \mathcal{N}(0, 1), \ \beta = (1, 2, -1, 3, -0.5, -1, 0.3, 1.7, 0.4, -0.3)^{T}$ and

$$(X_{1}, \cdots, X_{10}) \sim \mathcal{N}\left(\begin{pmatrix} 1 \\ \vdots \\ \vdots \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 0.8 & \cdots & 0.8 \\ 0.8 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0.8 \\ 0.8 & \cdots & 0.8 & 1 \end{pmatrix}\right).$$

All components of X each have a probability 0.2 of being missing, Completely At Random.

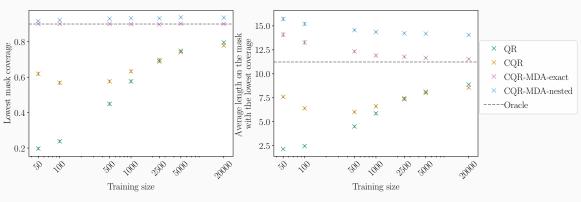
- Method: CQR
- Basemodel: neural network
- Imputation: iterative (pprox conditional expectation)
- Mask as features: yes
- 100 repetitions
 - $\circ\,$ train size of 500 points
 - $\circ\,$ calibration size of 250 points
 - \circ test size of 100 points for each pattern size, and 2000 for the marginal test set

Results per pattern size

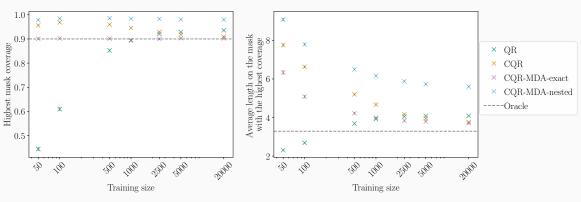


- Method: CQR
- Basemodel: neural network
- Imputation: iterative (\approx conditional expectation)
- Mask as features: yes
- 100 repetitions
 - \circ train size varies
 - $\circ\,$ calibration size of 1000 points
 - \circ test size of 2000 points

Results on the worst group



Results on the best group

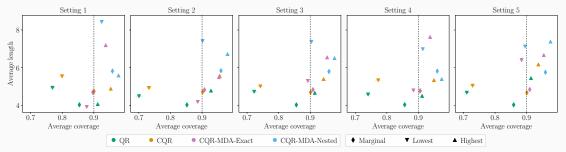


6 variables (denote this set X_{missing}) out of 10 can be missing (the 4 others form the set X_{observed})

$$\rightarrow X_{\text{missing}} = \{X_1, X_2, X_3, X_5, X_8, X_9\};$$

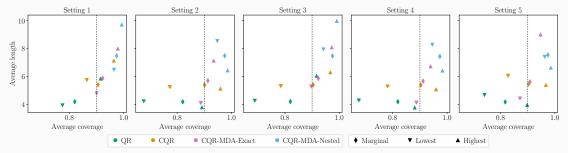
• Proportion of missing entries fixed to be 20%.

- Probability of the variables in X_{missing} to be missing given by a logistic model of arguments X_{observed}.
- This setting is declined 5 times, with different weights for the logistic model.



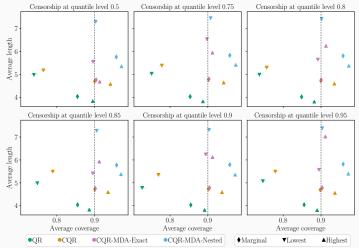
MNAR self masked missingness

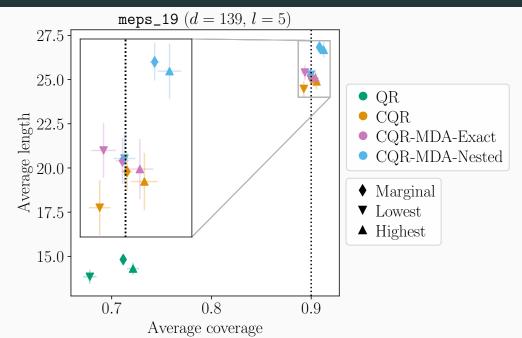
- Probability of each variable in X_{missing} to be missing given by a logistic model of argument the same variable of X_{missing}.
- This setting is declined 5 times, with different weights for the logistic model.

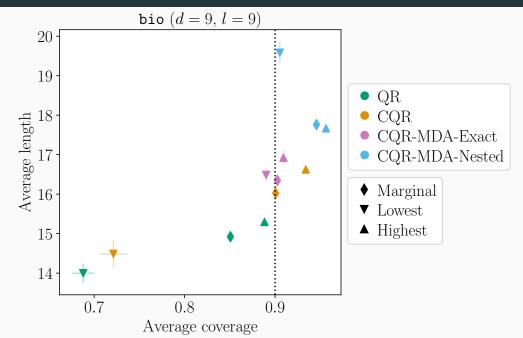


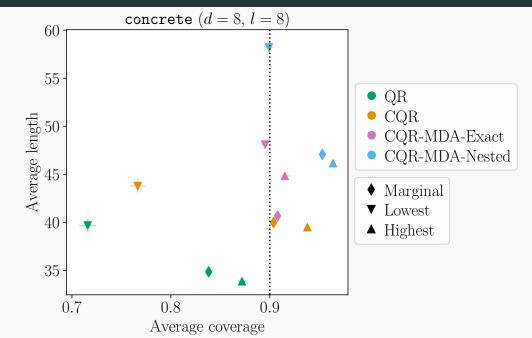
MNAR quantile censorship missingness

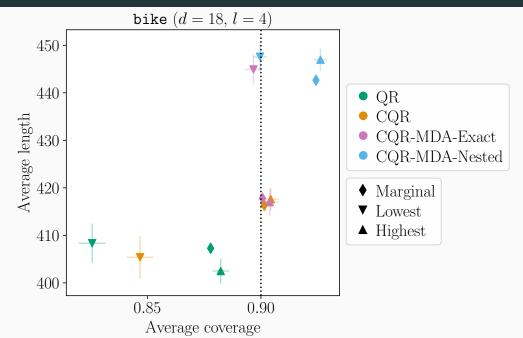
- Missing values are introduced at random in each q-quantile of the variables in $X_{\rm missing}$.
- 6 different settings: q varies between 0.5, 0.75, 0.8, 0.85, 0.9 and 0.95.











- Age: the age of the patient (no missing values);
- Lactate: the conjugate base of lactic acid, upon arrival at the hospital (17.66% missing values);
- Delta_hemo: the difference between the hemoglobin upon arrival at hospital and the one in the ambulance (23.82% missing values);
- VE: binary variable indicating if a Volume Expander was applied in the ambulance. A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system (2.46% missing values);
- RBC: a binary index which indicates whether the transfusion of Red Blood Cells Concentrates is performed (0.37% missing values);

- SI: the shock index. It indicates the level of occult shock based on heart rate (HR) and systolic blood pressure (SBP), that is SI = ^{HR}/_{SBP}, upon arrival at hospital (2.09% missing values);
- HR: the heart rate measured upon arrival of hospital (1.62% missing values).

Results with CQR-MDA-Nested

