Conformal Prediction for Time Series An application to forecasting French electricity Spot prices

Margaux Zaffran^[1,2,3] Aymeric Dieuleveut^[3] Olivier Féron^[1,4] Yannig Goude^[1] Julie Josse^[2] 15/12/2021

^[1]EDF R&D ^[2]INRIA ^[3]CMAP, Ecole Polytechnique ^[4]FiME

Forecasting French electricity Spot prices

Electricity Spot prices

Figure 1: Drawing of spot auctions mechanism

French Electricity Spot prices data set: visualisation

Figure 2: Representation of the French electricity spot price, from 2016 to 2019.

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:		:	:	:	÷
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
	÷	•	•	-	:
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/01/16 1PM	35.66	34.60	20.04	69500	Monday
:	:	:	:		:

Table 1: Extract of the built data set, for French electricity spot price forecasting.

Forecasting French electricity Spot prices

Figure 3: French electricity spot price and its prediction with random forest.

$$\,\,\hookrightarrow\,\, (x_t,y_t) \in {\mathbb R}^d imes {\mathbb R}$$
 (d = 56, details later)

- $\,\hookrightarrow\,$ 3 years for training
- $\hookrightarrow\,1$ year to forecast

Forecasting French electricity Spot prices with confidence

Figure 4: French electricity spot price, its prediction and its uncertainty with Adaptive Conformal Inference (Gibbs and Candès, 2021).

Forecasting French electricity Spot prices with confidence: results

- Target coverage: 90%
- Empirical coverage: 90.46%¹
- Average length: 22.91€/MWh

 $^{^1{\}rm But}$ conditional coverage varies from 86.14% to 93% depending on the day of the week (from example).

Available methods for non-exchangeable data, in the context of time series

- Data: T_0 observations $(x_1, y_1), \ldots, (x_{T_0}, y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$
- Aim: predict the response values as well as predictive intervals for T₁ subsequent observations x_{T0+1},..., x_{T0+T1}
- \hookrightarrow Build the smallest interval \mathcal{C}^t_{α} such that:

$$\mathbb{P}\left\{Y_t \in \mathcal{C}^t_{\alpha}\left(X_t\right)\right\} \ge 1 - \alpha, \text{ for } t \in [\![T_0 + 1; T_0 + T_1]\!].$$

Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)

Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split
 - \hookrightarrow use only the past so as to correctly estimate the variance of the residuals (using the future leads to optimistic residuals and underestimation of their variance)

• Online (sequential) split conformal prediction (Wisniewski et al. (2020); Kath and Ziel (2021); and our study);

 $\hookrightarrow\,$ tested on real time series

- Online (sequential) split conformal prediction (Wisniewski et al. (2020); Kath and Ziel (2021); and our study);
 - $\hookrightarrow\,$ tested on real time series
- Ensemble Prediction Interval (Xu and Xie, 2021);
 - $\hookrightarrow\,$ tested on other real time series
 - \hookrightarrow compared to offline methods (unfair)

- Online (sequential) split conformal prediction (Wisniewski et al. (2020); Kath and Ziel (2021); and our study);
 - $\hookrightarrow\,$ tested on real time series
- Ensemble Prediction Interval (Xu and Xie, 2021);
 - $\hookrightarrow\,$ tested on other real time series
 - \hookrightarrow compared to offline methods (unfair)
- Adaptive Conformal Inference (Gibbs and Candès, 2021).
 - \hookrightarrow tested on one simulation and real time series with important breaks (distribution shift)

- Online (sequential) split conformal prediction (Wisniewski et al. (2020); Kath and Ziel (2021); and our study);
 - $\hookrightarrow\,$ tested on real time series
- Ensemble Prediction Interval (Xu and Xie, 2021);
 - $\hookrightarrow\,$ tested on other real time series
 - \hookrightarrow compared to offline methods (unfair)
- Adaptive Conformal Inference (Gibbs and Candès, 2021).
 - \hookrightarrow tested on one simulation and real time series with important breaks (distribution shift)
- \Rightarrow No systematic simulations
- \Rightarrow No fair and common comparison

Online sequential conformal prediction (OSCP)

Figure 5: Diagram describing the online sequential split conformal prediction.

EnbPI, Xu and Xie (2021)

Figure 6: Diagram describing the EnbPI algorithm.

EnbPI, Xu and Xie (2021)

- 1. Train *B* bootstrap predictors;
- 2. Obtain out-of-bootstrap residuals by aggregating the corresponding predictors;
- 3. Do not re-train the B bootstrap predictors;
- 4. Obtain new residual by aggregating all the predictors. Forget the first residuals.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \operatorname{err}_t \right) \tag{1}$$

with:

$$\operatorname{err}_{t} := \begin{cases} 1, \text{ if } y_{t} \notin \hat{\mathcal{C}}_{\alpha_{t}}(x_{t}), \\ 0, \text{ otherwise }, \end{cases}$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \operatorname{err}_t \right) \tag{1}$$

with:

$$\operatorname{err}_{t} := \left\{ egin{array}{ll} 1, \ \operatorname{if} \ y_{t}
otin \hat{\mathcal{C}}_{lpha_{t}}\left(x_{t}
ight), \\ 0, \ \operatorname{otherwise}, \end{array}
ight.$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Visualisation of the procedure

Figure 6: Visualisation of ACI with different values of γ

Visualisation of the procedure

Figure 6: Visualisation of ACI with different values of γ ACI originally splitted randomly. We use ACI with a sequential split.

Summary of the methods

Methods	Pros	Cons		
OSCP	• Easy to implement	 No general theoretical validity (results hold until strongly mixing²) 		
EnbPI	 Adapted to small data sets Quicker on new forecasts 	 Bootstrap not adapted to time series Mixes two different aggregation functions³ No general theoretical validity 		
ACI	 Easy to implement Theoretical validity without assumptions (long-term) 	• γ tuning		

²Chernozhukov et al. (2018)

 $^{3}\mbox{New}$ paper changing this, after discussion with Chen Xu at ICML workshop.

	Currently available		Contribution	
Methods	Language	Details	Language	Options
CP	R		Python	
OSCP	not available		Python	randomized split
EnbPI	Python		Python	same aggregation function
ACI	R script	no general function	Python	randomized split

 \Rightarrow We propose a unified repository containing all the conformal prediction methods for time series, with their variants as options.

Comparison on simulated data

$$Y_t = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$$

where the X_t are multivariate uniformly distributed on [0, 1] and ε_t are generated from an ARMA(1,1) process.

$$Y_t = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$$

where the X_t are multivariate uniformly distributed on [0, 1] and ε_t are generated from an ARMA(1,1) process.

Definition (ARMA(1,1) process)

We say that ε_t is an ARMA(1,1) process if for any t:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$

with ξ_t is a white noise of variance σ^2 , called the **innovation**.

$$Y_t = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$$

where the X_t are multivariate uniformly distributed on [0, 1] and ε_t are generated from an ARMA(1,1) process.

Definition (ARMA(1,1) process)

We say that ε_t is an ARMA(1,1) process if for any t:

 $\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$

with ξ_t is a white noise of variance σ^2 , called the **innovation**.

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance Var(ε_t) constant to 1 or 10.

We use random forest as regressor.

We use random forest as regressor.

For each setting (pair variance and φ, θ):

- 300 points, the last 100 kept for prediction and evaluation,
- 500 repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

We use random forest as regressor.

For each setting (pair variance and φ, θ):

- 300 points, the last 100 kept for prediction and evaluation,
- 500 repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

We present the results in the ARMA(1,1) case, but we also have them for AR(1) and MA(1) processes.

Results: impact of the temporal dependence, variance 1

- OSCP (adapted from Lei et al., 2018)
- × EnbPl (Xu & Xie, 2021)
- + EnbPI (Xu & Xie, 2021) with mean aggregation

.

ACI (Gibbs & Candes, 2021), γ = 0.05

Results: impact of the temporal dependence, variance 10

- OSCP (adapted from Lei et al., 2018)
- × EnbPI (Xu & Xie, 2021)
- + EnbPI (Xu & Xie, 2021) with mean aggregation
- ACI (Gibbs & Candes, 2021), $\gamma = 0.01$
- ACI (Gibbs & Candes, 2021), γ = 0.05

Friedman simulation with ARMA noise of fixed total variance to 10.

• Online CP: achieves valid coverage for values of φ and θ smaller than 0.99.

- Online CP: achieves valid coverage for values of φ and θ smaller than 0.99.
- ACI: achieves valid coverage with $\gamma = 0.05$. Nevertheless, the choice of γ is important.

- Online CP: achieves valid coverage for values of φ and θ smaller than 0.99.
- ACI: achieves valid coverage with $\gamma = 0.05$. Nevertheless, the choice of γ is important.
- EnbPI: for small variance, really competitive (small lengths). But for strong dependence and/or high variance, fails to attain coverage.

A closer look at ACI: choosing γ ?

Empirical evaluation of ACI sensitivity to γ

 \Rightarrow The more the dependence, the more sensitive to γ is ACI.

Adaptive choice of $\boldsymbol{\gamma}$

• Naive method: best until now (smallest among valid ones)

Adaptive choice of $\boldsymbol{\gamma}$

- Naive method: best until now (smallest among valid ones)
- Improved method: online aggregation for each bound separately, using the pinball loss

Adaptive choice of $\boldsymbol{\gamma}$

- Naive method: best until now (smallest among valid ones)
- Improved method: online aggregation for each bound separately, using the pinball loss

Adaptive choice of γ

- Naive method: best until now (smallest among valid ones)
- Improved method: online aggregation for each bound separately, using the pinball loss

• Naive method: accumulates error of the different ACI's versions.

Adaptive choice of γ

- Naive method: best until now (smallest among valid ones)
- Improved method: online aggregation for each bound separately, using the pinball loss

- Naive method: accumulates error of the different ACI's versions.
- Expert aggregation: encouraging preliminary results.

 $\underline{\rm Aim:}$ derive theoretical results on the ${\bf average}~{\rm length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

 $\underline{\rm Aim:}$ derive theoretical results on the ${\bf average}~{\rm length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

<u>Approach</u>: consider extreme cases (useful in an adversarial context) even if strong assumptions are needed

- 1. i.i.d.
- 2. AR(1)
- 3. distribution shift
- 4. Hidden Markov Model

Lemma

Assume that:

- $\alpha \in \mathbb{Q}$;
- the scores are i.i.d. of quantile function Q;
- the quantile function is permanently perfectly estimated (i.e. $\hat{Q}_t = Q$ for all t > 0).

Then $(\alpha_t)_t$ forms an irreducible Markov Chain on a finite state space. Thus, it is a positive recurrent Markov Chain.

Theoretical analysis of ACI's length: i.i.d. case

Theorem

Under the assumptions of previous lemma and that the quantile function Q is bounded.

Then we have:

$$\frac{1}{T} \sum_{t=1}^{T} L(\alpha_t) \xrightarrow[T \to +\infty]{} \mathbb{E}_{\pi_{\gamma}}[L(\alpha_t)]$$

with π_{γ} the stationary distribution of the Markov Chain and: $\mathbb{E}_{\pi_{\gamma}}[L(\alpha_t)] = L_0 + \frac{Q''(1-\alpha)}{2}\gamma\alpha(1-\alpha) + O(\gamma^{3/2})$ where:

where:

- L(α_t) = 2Q(1 − α_t) is the length of the adaptive algorithm (the dependence in γ is hidden in α_t, and γ > 0);
- $L_0 = 2Q(1 \alpha)$ is the length of the non-adaptive algorithm $(\gamma = 0)$.

• Similar results in the case where the scores are an AR(1) process

 $\hookrightarrow \text{ exhibit an optimal } \gamma \text{ depending on } \varphi?$

- Similar results in the case where the scores are an AR(1) process
 - $\hookrightarrow \text{ exhibit an optimal } \gamma \text{ depending on } \varphi?$
- Similar results in the case where there is a distribution shift in the scores
 - $\,\hookrightarrow\,$ highlights the positive gain made by ACI

- Similar results in the case where the scores are an AR(1) process
 - $\hookrightarrow \text{ exhibit an optimal } \gamma \text{ depending on } \varphi?$
- Similar results in the case where there is a distribution shift in the scores

 $\,\hookrightarrow\,$ highlights the positive gain made by ACI

• Similar results in the case where there is a Hidden Markov Model

Price prediction with confidence in 2019

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

 $\circ y_t \in \mathbb{R}$

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

$$\circ \ y_t \in \mathbb{R}$$

 $\circ \ x_t \in \mathbb{R}^d$, with $d=\ 24\ +\ 24\ +\ 1\ +\ 7\ =56$
24 prices of the day before

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

•
$$y_t \in \mathbb{R}$$

• $x_t \in \mathbb{R}^d$, with $d = 24 + 24 + 1 + 7 = 56$
24 prices of the day before
24 prices of the 7 days before

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

y_t ∈ ℝ
x_t ∈ ℝ^d, with d = 24 + 24 + 1 + 7 = 56
24 prices of the day before.
24 prices of the 7 days before.
Forecasted consumption.

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

y_t ∈ ℝ
x_t ∈ ℝ^d, with d = 24 + 24 + 1 + 7 = 56
24 prices of the day before
24 prices of the 7 days before
Forecasted consumption
Encoded day of the week

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

$$\circ y_t \in \mathbb{R}$$

- $\circ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
- $\,\circ\,$ 3 years for training/calibration, i.e. $\,T_0=1096$ observations

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

$$\circ y_t \in \mathbb{R}$$

- $\circ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
- $\circ~$ 3 years for training/calibration, i.e. $~{\cal T}_0=1096~observations$
- $\circ~1$ year to forecast, i.e. ${\it T}_1=365$ observations

Performance on predicted French electricity Spot price for the year 2019

Performance on predicted French electricity Spot price: visualisation of a day

Figure 7: Online seq. split CP

Figure 8: EnbPI

Figure 9: ACI with $\gamma = 0.01$

Figure 10: ACI with $\gamma = 0.05$

Perspective: towards conditional coverage?

Figure 11: ACI with $\gamma = 0.05$

Concluding remarks

- Online sequential split conformal prediction achieves correct performances
- ACI obtains valid coverage in the time dependent settings, whilst designed initially for shifts
- ACI is sensitive to γ choice
- EnbPl is highly competitive in some regimes, but its performance depends a lot on the regime

- Pipeline of analysis for simulation of increasing difficulty and real data analysis (code in python) for reproducible work and benchmarking conformal predictions in the framework of time series
- Demonstration of ACI's interest in the broader time series framework (simulation and real world)
- Theoretical results on ACI's length depending on γ (on-going)
- $\bullet\,$ Empirical proposition of an adaptive choice of γ

- Refined analysis of expert aggregation for $\boldsymbol{\gamma}$ choice
 - Theoretical guarantees?
 - Other aggregation methods, other losses...

- Refined analysis of expert aggregation for γ choice
 - Theoretical guarantees?
 - Other aggregation methods, other losses...
- Development of a conformal prediction procedure for time series with approximate/asymptotic conditional coverage

- Refined analysis of expert aggregation for γ choice
 - Theoretical guarantees?
 - Other aggregation methods, other losses...
- Development of a conformal prediction procedure for time series with approximate/asymptotic conditional coverage
- Refined analysis of expert aggregation for γ choice
 - Theoretical guarantees?
 - Other aggregation methods, other losses...
- Development of a conformal prediction procedure for time series with approximate/asymptotic conditional coverage

 \hookrightarrow ACI with $\alpha_t(x)$ and $\operatorname{err}_t(x)$?

Thank you!

- Chernozhukov, V., Wüthrich, K., and Yinchu, Z. (2018). Exact and Robust Conformal Inference Methods for Predictive Machine Learning with Dependent Data. In *Conference On Learning Theory*, pages 732–749. PMLR. ISSN: 2640-3498.
- Gibbs, I. and Candès, E. (2021). Adaptive Conformal Inference Under Distribution Shift. arXiv:2106.00170 [stat]. arXiv: 2106.00170.
- Kath, C. and Ziel, F. (2021). Conformal prediction interval estimation and applications to day-ahead and intraday power markets. *International Journal of Forecasting*, 37(2):777–799.

Wisniewski, W., Lindsay, D., and Lindsay, S. (2020). Application of conformal prediction interval estimations to market makers' net positions. In Gammerman, A., Vovk, V., Luo, Z., Smirnov, E., and Cherubin, G., editors, *Proceedings of the Ninth Symposium on Conformal and Probabilistic Prediction and Applications*, volume 128 of *Proceedings of Machine Learning Research*, pages 285–301. PMLR.

Xu, C. and Xie, Y. (2021). Conformal prediction interval for dynamic time-series. In Meila, M. and Zhang, T., editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 11559–11569. PMLR.

Conformal prediction and time series, what's the issue?

Time series are not exchangeable

-1.0

Figure 14: Shift

100 200 300 400 500

⁴Images from Yannig Goude class material.

Time dependent noise

Assume the following model:

$$Y_t = f_t(X_t) + \varepsilon_t$$
, for $t \in \mathbb{N}^*$,

for some function f_t , and some noise ε_t .

Time dependent noise

Assume the following model:

$$Y_t = f_t(X_t) + \varepsilon_t$$
, for $t \in \mathbb{N}^*$,

for some function f_t , and some noise ε_t .

If the noise ε_t is time dependent, the residuals will be dependent no matter what is the fitted regression function.

Time dependent noise

Assume the following model:

$$Y_t = f_t(X_t) + \varepsilon_t$$
, for $t \in \mathbb{N}^*$,

for some function f_t , and some noise ε_t .

If the noise ε_t is time dependent, the residuals will be dependent no matter what is the fitted regression function.

Figure 16: Auto-Regressive noise

Even if the noise is exchangeable, we can produce dependent residuals (examples available).

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Then, for any t, we have that:

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = (a - \hat{a}) Y_{t-1} + \varepsilon_t$$
$$\hat{\varepsilon}_t = a\hat{\varepsilon}_{t-1} + \xi_t$$

with $\xi_t = \varepsilon_t - \hat{a}\varepsilon_{t-1}$.

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Then, for any t, we have that:

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = (a - \hat{a}) Y_{t-1} + \varepsilon_t$$
$$\hat{\varepsilon}_t = a\hat{\varepsilon}_{t-1} + \xi_t$$

with $\xi_t = \varepsilon_t - \hat{a}\varepsilon_{t-1}$.

 $\hat{\varepsilon}_t$ is an ARMA process of parameters $\varphi = a$ and $\theta = -\hat{a}$.

$$Y_t = aY_{t-1} + \varepsilon_t,$$

where ε_t is a white noise.

Assume that the fitted model is $\hat{f}_t(x) = \hat{a}x$, with $\hat{a} \neq a$.

Then, for any t, we have that:

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = (a - \hat{a}) Y_{t-1} + \varepsilon_t$$
$$\hat{\varepsilon}_t = a\hat{\varepsilon}_{t-1} + \xi_t$$

with $\xi_t = \varepsilon_t - \hat{a}\varepsilon_{t-1}$.

 $\hat{\varepsilon}_t$ is an ARMA process of parameters $\varphi = a$ and $\theta = -\hat{a}$.

Thus, we have generated dependent residuals (ARMA residuals) even if the underlying model only had white noise.

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume that we misspecify the model such that the fitted model is $\hat{f}_t(x) = ax_1$.

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \sim \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume that we misspecify the model such that the fitted model is $\hat{f}_t(x) = ax_1$.

Then, for any t, we have that

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = bX_{2,t} + \varepsilon_t.$$

$$Y_t = aX_{1,t} + bX_{2,t} + \varepsilon_t,$$

with $\varepsilon_t \sim \mathcal{N}(0,1)$, $X_{2,t+1} = \varphi X_{2,t} + \xi_t$, $\xi_t \sim \mathcal{N}(0,1)$ and $X_{1,t}$ can be any random variable.

Assume that we misspecify the model such that the fitted model is $\hat{f}_t(x) = ax_1$.

Then, for any t, we have that

$$\hat{\varepsilon}_t = Y_t - \hat{Y}_t = bX_{2,t} + \varepsilon_t.$$

Thus, we have generated dependent residuals (auto-regressive residuals) even if the underlying model only had i.i.d. Gaussian noise.

Summary of the methods

	Scores distribution		
Methods	Exchangeable	Strongly mixing	No assumption
OSCP	1	✓ ⁵	×
EnbPI	×	×	×
ACI	 Image: A second s	\checkmark	1

Table 4: Methods validity with respect to the conformity scores distribution. Green marks indicates finite-sample validity, orange long-term validity and red no theoretical validity.

⁵Chernozhukov et al. (2018)

Details on the simulation set up

$$Y_{t} = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^{2} + 10X_{t,4} + 5X_{t,5} + \varepsilon_{t}$$

where the X_t are multivariate uniformly distributed on [0, 1] and ε_t are generated from an ARMA(1,1) process.

$$Y_{t} = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^{2} + 10X_{t,4} + 5X_{t,5} + \varepsilon_{t}$$

where the X_t are multivariate uniformly distributed on [0, 1] and ε_t are generated from an ARMA(1,1) process.

 \Rightarrow dependence structure in the noise in order to:

- control the strength of the scores dependence,
- evaluate the impact of this temporal dependence structure of the results.

Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that ε_t is an ARMA(1,1) process if for any t:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$

with:

- $\theta + \varphi \neq 0$, $|\varphi| < 1$ and $|\theta| < 1$;
- ξ_t is a white noise of variance σ^2 , called the **innovation**.

Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that ε_t is an ARMA(1,1) process if for any t:

$$\varepsilon_{t+1} = \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t,$$

with:

•
$$\theta + \varphi \neq 0$$
, $|\varphi| < 1$ and $|\theta| < 1$;

- ξ_t is a white noise of variance σ^2 , called the **innovation**.
- The higher φ and $\theta,$ the stronger the dependence.
- The asymptotic variance of this process is:

$$\operatorname{Var}(\varepsilon_t) = \sigma^2 \frac{1 - 2\varphi \theta + \theta^2}{1 - \varphi^2}.$$

- If $\theta = 0$, only the auto-regressive part, it is an AR(1).
- If $\varphi = 0$, only the moving-average part, it is an MA(1).

Simulation settings

- φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance Var(ε_t) constant to 1 or 10.
- We use random forest as regressor.

Simulation settings

- φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance Var(ε_t) constant to 1 or 10.
- We use random forest as regressor.

For each setting:

- 300 points, the last 100 kept for prediction and evaluation,
- 500 repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

Simulation settings

- φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ so as to keep the variance Var(ε_t) constant to 1 or 10.
- We use random forest as regressor.

For each setting:

- 300 points, the last 100 kept for prediction and evaluation,
- 500 repetitions,
- \Rightarrow in total, $100 \times 500 = 50000$ predictions are evaluated.

We present the results in the ARMA(1,1) case, but we also have them for AR(1) and MA(1) processes.

Additional results

Results: impact of the temporal dependence, AR(1), variance 1

Results: impact of the temporal dependence, AR(1), variance 10

Results: impact of the temporal dependence, MA(1), variance 1

Results: impact of the temporal dependence, MA(1), variance 10

