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Forecasting French electricity Spot prices



Electricity Spot prices

Figure 1: Drawing of spot auctions mechanism
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French Electricity Spot prices data set: visualisation

Figure 2: Representation of the French electricity spot price, from 2016

to 2019.
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French Electricity Spot prices data set: extract

Date and time Price Price D-1 Price D-7 For. cons. DOW

11/01/16 0PM 21.95 15.58 13.78 58800 Monday

11/01/16 1PM 20.04 19.05 13.44 57600 Monday
...

...
...

...
...

...

12/01/16 0PM 21.51 21.95 25.03 61600 Tuesday

12/01/16 1PM 19.81 20.04 24.42 59800 Tuesday
...

...
...

...
...

...

18/01/16 0PM 38.14 37.86 21.95 70400 Monday

18/01/16 1PM 35.66 34.60 20.04 69500 Monday
...

...
...

...
...

...

Table 1: Extract of the built data set, for French electricity spot price

forecasting.
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Forecasting French electricity Spot prices

Figure 3: French electricity spot price and its prediction with random

forest.

↪→ (xt , yt) ∈ Rd ×R (d = 56, details later)

↪→ 3 years for training

↪→ 1 year to forecast
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Forecasting French electricity Spot prices with confidence

Figure 4: French electricity spot price, its prediction and its uncertainty

with Adaptive Conformal Inference (Gibbs and Candès, 2021).
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Forecasting French electricity Spot prices with confidence: re-

sults

• Target coverage: 90%

• Empirical coverage: 90.46%1

• Average length: 22.91e/MWh

1But conditional coverage varies from 86.14% to 93% depending on the day of

the week (from example).
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Available methods for non-exchangeable

data, in the context of time series



Framework and notations

• Data: T0 observations (x1, y1), . . . , (xT0 , yT0) in R
d ×R

• Aim: predict the response values as well as predictive intervals

for T1 subsequent observations xT0+1, . . . , xT0+T1

↪→ Build the smallest interval Ct
α such that:

P
{
Yt ∈ Ct

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1;T0 + T1K.
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How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and
re-calibrate)

↪→ update to recent observations (trend impact, period of the

seasonality, dependence...)

• Use a sequential split

↪→ use only the past so as to correctly estimate the variance of

the residuals (using the future leads to optimistic residuals and

underestimation of their variance)
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Available methods

• Online (sequential) split conformal prediction (Wisniewski
et al. (2020); Kath and Ziel (2021); and our study);

↪→ tested on real time series

• Ensemble Prediction Interval (Xu and Xie, 2021);

↪→ tested on other real time series

↪→ compared to offline methods (unfair)

• Adaptive Conformal Inference (Gibbs and Candès, 2021).

↪→ tested on one simulation and real time series with important

breaks (distribution shift)

⇒ No systematic simulations

⇒ No fair and common comparison
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Online sequential conformal prediction (OSCP)

Figure 5: Diagram describing the online sequential split conformal

prediction.
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EnbPI, Xu and Xie (2021)

Figure 6: Diagram describing the EnbPI algorithm.
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EnbPI, Xu and Xie (2021)

1. Train B bootstrap predictors;

2. Obtain out-of-bootstrap residuals by aggregating the

corresponding predictors;

3. Do not re-train the B bootstrap predictors;

4. Obtain new residual by aggregating all the predictors.

Forget the first residuals.
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Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient ⇒ adapt the quantile level

used on the calibration’s scores.

(Distribution shift)

The proposed update scheme is the following:

αt+1 := αt + γ (α− errt) (1)

with:

errt :=

{
1, if yt /∈ Ĉαt (xt) ,

0, otherwise ,

and α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so

we want to increase its length by taking a higher quantile (a

smaller αt). Reversely if we included the point.
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0, otherwise ,

and α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so

we want to increase its length by taking a higher quantile (a

smaller αt). Reversely if we included the point.

12 / 33



Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient ⇒ adapt the quantile level

used on the calibration’s scores. (Distribution shift)

The proposed update scheme is the following:

αt+1 := αt + γ (α− errt) (1)

with:

errt :=

{
1, if yt /∈ Ĉαt (xt) ,
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Visualisation of the procedure

Figure 6: Visualisation of ACI with different values of γ

ACI originally splitted randomly. We use ACI with a sequential

split.
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Summary of the methods

Methods Pros Cons

OSCP
• Easy to implement • No general theoretical

validity (results hold until

strongly mixing2)

EnbPI
• Adapted to small data sets

• Quicker on new forecasts

• Bootstrap not adapted to

time series

• Mixes two different

aggregation functions3

• No general theoretical

validity

ACI
• Easy to implement

• Theoretical validity without

assumptions (long-term)

• γ tuning

2Chernozhukov et al. (2018)
3New paper changing this, after discussion with Chen Xu at ICML workshop.
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Computational aspect

Currently available Contribution

Methods Language Details Language Options

CP R Python

OSCP not available Python randomized split

EnbPI Python Python same aggregation function

ACI R script no general function Python randomized split

⇒ We propose a unified repository containing all the conformal

prediction methods for time series, with their variants as options.
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Comparison on simulated data



Data generation

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt are multivariate uniformly distributed on [0, 1] and εt

are generated from an ARMA(1,1) process.

Definition (ARMA(1,1) process)

We say that εt is an ARMA(1,1) process if for any t:

εt+1 = φεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2, called the innovation.

• φ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ so as to keep the variance Var(εt) constant to 1 or

10.
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Simulation settings

We use random forest as regressor.

For each setting (pair variance and φ,θ):

• 300 points, the last 100 kept for prediction and evaluation,

• 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

We present the results in the ARMA(1,1) case, but we also have

them for AR(1) and MA(1) processes.
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Results: impact of the temporal dependence, variance 1
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Results: impact of the temporal dependence, variance 10
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Summary

• Online CP: achieves valid coverage for values of φ and θ

smaller than 0.99.

• ACI: achieves valid coverage with γ = 0.05. Nevertheless, the

choice of γ is important.

• EnbPI: for small variance, really competitive (small lengths).

But for strong dependence and/or high variance, fails to

attain coverage.
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A closer look at ACI: choosing γ?



Empirical evaluation of ACI sensitivity to γ

⇒ The more the dependence, the more sensitive to γ is ACI.
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Adaptive choice of γ

• Naive method: best until now (smallest among valid ones)

• Improved method: online aggregation for each bound

separately, using the pinball loss

• Naive method: accumulates error of the different ACI’s

versions.

• Expert aggregation: encouraging preliminary results.
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Theoretical analysis of ACI’s length

Aim: derive theoretical results on the average length of ACI

depending on γ

↪→ Guideline for choosing γ

Approach: consider extreme cases (useful in an adversarial context)

even if strong assumptions are needed

1. i.i.d.

2. AR(1)

3. distribution shift

4. Hidden Markov Model
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Theoretical analysis of ACI’s length: i.i.d. case

Lemma

Assume that:

• α ∈ Q;
• the scores are i.i.d. of quantile function Q;

• the quantile function is permanently perfectly estimated (i.e.

Q̂t = Q for all t > 0).

Then (αt)t forms an irreducible Markov Chain on a finite state

space. Thus, it is a positive recurrent Markov Chain.
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Theoretical analysis of ACI’s length: i.i.d. case

Theorem

Under the assumptions of previous lemma and that the quantile

function Q is bounded.

Then we have:

1

T

T∑
t=1

L(αt) −→
T→+∞

Eπγ [L(αt)]

with πγ the stationary distribution of the Markov Chain and:

Eπγ [L(αt)] = L0 +
Q ′′(1− α)

2
γα(1− α) + O(γ3/2)

where:

• L(αt) = 2Q(1− αt) is the length of the adaptive algorithm

(the dependence in γ is hidden in αt , and γ > 0);

• L0 = 2Q(1− α) is the length of the non-adaptive algorithm

(γ = 0).
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Theoretical analysis of ACI’s length: perspectives

• Similar results in the case where the scores are an AR(1)
process

↪→ exhibit an optimal γ depending on φ?

• Similar results in the case where there is a distribution shift in
the scores

↪→ highlights the positive gain made by ACI

• Similar results in the case where there is a Hidden Markov

Model
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Price prediction with confidence in 2019



Settings

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions

afterwards.

↪→ 24 models

◦ yt ∈ R
◦ xt ∈ Rd , with d = 24 + 24 + 1 + 7 = 56

◦ 3 years for training/calibration, i.e. T0 = 1096 observations

◦ 1 year to forecast, i.e. T1 = 365 observations

24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week
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Performance on predicted French electricity Spot price for the

year 2019
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Performance on predicted French electricity Spot price:

visualisation of a day

Figure 7: Online seq. split CP Figure 8: EnbPI

Figure 9: ACI with γ = 0.01 Figure 10: ACI with γ = 0.05
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Perspective: towards conditional coverage?

Figure 11: ACI with γ = 0.05
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Concluding remarks



Conclusion

• Online sequential split conformal prediction achieves correct

performances

• ACI obtains valid coverage in the time dependent settings,

whilst designed initially for shifts

• ACI is sensitive to γ choice

• EnbPI is highly competitive in some regimes, but its

performance depends a lot on the regime
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Contributions

• Pipeline of analysis for simulation of increasing difficulty and

real data analysis (code in python) for reproducible work and

benchmarking conformal predictions in the framework of time

series

• Demonstration of ACI’s interest in the broader time series

framework (simulation and real world)

• Theoretical results on ACI’s length depending on γ (on-going)

• Empirical proposition of an adaptive choice of γ
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Perspectives

• Refined analysis of expert aggregation for γ choice

• Theoretical guarantees?

• Other aggregation methods, other losses...

• Development of a conformal prediction procedure for time
series with approximate/asymptotic conditional coverage

↪→ ACI with αt(x) and errt(x)?
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Thank you!
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Conformal prediction and time series,

what’s the issue?



Time series are not exchangeable

Figure 12: Trend4 Figure 13: Seasonality4

Figure 14: Shift Figure 15: Time dependence

4Images from Yannig Goude class material.



Time dependent noise

Assume the following model:

Yt = ft(Xt) + εt , for t ∈ N∗,

for some function ft , and some noise εt .

If the noise εt is time dependent, the residuals will be dependent

no matter what is the fitted regression function.

Figure 16: Auto-Regressive noise
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Non-exchangeable even if the noise is exchangeable

Even if the noise is exchangeable, we can produce dependent

residuals (examples available).



Endogenous and not perfectly estimated

Assume Xt = Yt−1 ∈ R and that

Yt = aYt−1 + εt ,

where εt is a white noise.

Assume that the fitted model is f̂t(x) = âx , with â ̸= a.

Then, for any t, we have that:

ε̂t = Yt − Ŷt = (a− â)Yt−1 + εt

ε̂t = aε̂t−1 + ξt

with ξt = εt − âεt−1.

ε̂t is an ARMA process of parameters φ = a and θ = −â.

Thus, we have generated dependent residuals (ARMA residuals)

even if the underlying model only had white noise.
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Exogenous and misspecified

Assume Xt ∈ R2 and that:

Yt = aX1,t + bX2,t + εt ,

with εt ∼
i.i.d.

N (0, 1), X2,t+1 = φX2,t + ξt , ξt ∼
i.i.d.

N (0, 1) and X1,t

can be any random variable.

Assume that we misspecify the model such that the fitted model is

f̂t(x) = ax1.

Then, for any t, we have that

ε̂t = Yt − Ŷt = bX2,t + εt .

Thus, we have generated dependent residuals (auto-regressive

residuals) even if the underlying model only had i.i.d. Gaussian

noise.
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Summary of the methods



Theoretical summary of the methods

Scores distribution

Methods Exchangeable Strongly mixing No assumption

OSCP ✓ ✓5 ✗

EnbPI ✗ ✗ ✗

ACI ✓ ✓ ✓

Table 4: Methods validity with respect to the conformity scores

distribution. Green marks indicates finite-sample validity, orange

long-term validity and red no theoretical validity.

5Chernozhukov et al. (2018)



Details on the simulation set up



Data generation

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt are multivariate uniformly distributed on [0, 1] and εt

are generated from an ARMA(1,1) process.

⇒ dependence structure in the noise in order to:

• control the strength of the scores dependence,

• evaluate the impact of this temporal dependence structure of

the results.
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Auto-Regressive Moving Average

Definition (ARMA(1,1) process)

We say that εt is an ARMA(1,1) process if for any t:

εt+1 = φεt + ξt+1 + θξt ,

with:

• θ + φ ̸= 0, |φ| < 1 and |θ| < 1;

• ξt is a white noise of variance σ2, called the innovation.

• The higher φ and θ, the stronger the dependence.

• The asymptotic variance of this process is:

Var(εt) = σ2 1− 2φθ + θ2

1− φ2
.

• If θ = 0, only the auto-regressive part, it is an AR(1).

• If φ = 0, only the moving-average part, it is an MA(1).
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Simulation settings

• φ and θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ so as to keep the variance Var(εt) constant to 1 or

10.

• We use random forest as regressor.

For each setting:

• 300 points, the last 100 kept for prediction and evaluation,

• 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.

We present the results in the ARMA(1,1) case, but we also have

them for AR(1) and MA(1) processes.
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Additional results



Results: impact of the temporal dependence, AR(1), variance
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Results: impact of the temporal dependence, MA(1), variance
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