A new dissimilarity for extreme rainfall clustering, non-parametric and coupling bivariate extreme value theory and marginals

Margaux Zaffran, Philippe Naveau

Laboratoire des Sciences du Climat et de l'Environnement (ESTIMR)

JdS 2021 - 08/06/2021

Introduction	١
•0	

Back to rainfall $_{0000}$

Conclusion

Context

Dataset: daily France rainfall in mm (1mm $= 1L/m^2$), from 1976 to 2015, at 174 Meteo-France stations.

Figure: Weather stations

Conclusion

Objectives

Aim:

• Construct coherent groups of locations according to the nature of the extreme's rainfall/wind/temperature there (e.g. spatial group)

Objectives

Aim:

• Construct coherent groups of locations according to the nature of the extreme's rainfall/wind/temperature there (e.g. spatial group)

Constraints:

- Non-parametric approach (no fit, few assumptions)
- Good scaling to large datasets

Back to rainfall

Conclusion

Divergence

Mathematical tool to quantify the similarity between two probability distributions.

Conclusion

Divergence

Mathematical tool to quantify the similarity between two probability distributions.

Kullback-Leibler directed divergence is asymmetric. Symmetrized quantity:

Definition (Kullback-Leibler divergence)

Let f and g be two probability density functions. Then:

$$D(f,g) = J(f;g) + J(g;f)$$

= $\mathbb{E}_f \left[\log \left(\frac{f(X)}{g(X)} \right) \right] + \mathbb{E}_g \left[\log \left(\frac{g(Y)}{f(Y)} \right) \right]$

Back to rainfall

Conclusion

Extreme

Excesses over a threshold.

Variable of interest: $X_u = [X|X > u]$, for some well-chosen and high threshold u.

Back to rainfall

Conclusion

Extreme

Excesses over a threshold.

Variable of interest: $X_u = [X|X > u]$, for some well-chosen and high threshold u.

Conclusion

Extreme

Excesses over a threshold.

Variable of interest: $X_u = [X|X > u]$, for some well-chosen and high threshold u.

Let X r.v. with density f (and tail \overline{F}). Then, for any threshold u, has the following characteristics:

• density
$$f_u(x) = \frac{f(x)}{\overline{F}(u)} \mathbb{1}_{\{x > u\}}$$

• tail $\overline{F}_u(x) = \frac{\overline{F}(x)}{\overline{F}(u)} \mathbb{1}_{\{x > u\}}$

Back to rainfall $_{0000}$

Conclusion

Kullback-Leibler divergence tailored for large excesses

KL adapted for univariate extremes, in terms of excesses, in [Naveau et al., 2014]. We can consider the quantity:

$$D(f_u, g_u) = J(f_u; g_u) + J(g_u; f_u)$$

with $J(f_u; g_u) = \mathbb{E}_{f_u} \left[\log \left(\frac{f_u(X_u)}{g_u(X_u)} \right) \right].$

Conclusion

Kullback-Leibler divergence tailored for large excesses

KL adapted for univariate extremes, in terms of excesses, in [Naveau et al., 2014]. We can consider the quantity:

$$D(f_u, g_u) = J(f_u; g_u) + J(g_u; f_u)$$

with $J(f_u; g_u) = \mathbb{E}_{f_u} \left[\log \left(\frac{f_u(X_u)}{g_u(X_u)} \right) \right].$

Proposition (from [Naveau et al., 2014])

 $D(f_u, g_u)$ is equivalent (under assumptions), as u o au, to:

$$K(f_u, g_u) = -L(f_u; g_u) - L(g_u; f_u)$$

with: $L(f_u; g_u) = \mathbb{E}_f \left[\log \left(\frac{\overline{G}(X)}{\overline{G}(u)} \right) | X > u \right] - 1.$

Conclusion

Kullback-Leibler divergence tailored for large excesses

KL adapted for univariate extremes, in terms of excesses, in [Naveau et al., 2014]. We can consider the quantity:

$$D(f_u, g_u) = J(f_u; g_u) + J(g_u; f_u)$$

with $J(f_u; g_u) = \mathbb{E}_{f_u} \left[\log \left(\frac{f_u(X_u)}{g_u(X_u)} \right) \right].$

Proposition (from [Naveau et al., 2014])

 $D(f_u,g_u)$ is equivalent (under assumptions), as u
ightarrow au, to:

$$K(f_u,g_u) = -L(f_u;g_u) - L(g_u;f_u)$$

with: $L(f_u; g_u) = \mathbb{E}_f \left[\log \left(\frac{\overline{G}(X)}{\overline{G}(u)} \right) | X > u \right] - 1.$

ightarrow easy construction of a plug-in estimator

Bivariate extreme dependence

Back to rainfall

Conclusion

Tail dependency

Take into account the tail dependence.

Definition (residual tail dependence coefficient)

Back to rainfall $_{0000}$

Conclusion

Tail dependency

Take into account the tail dependence.

Definition (residual tail dependence coefficient)

Let X, Y, two r.v. of c.d.f F and G respectively.

$$\frac{\mathbb{P}\{X > F^{-1}(q)\}\mathbb{P}\{Y > G^{-1}(q)\}}{\mathbb{P}\{X > F^{-1}(q), Y > G^{-1}(q)\}}$$

Back to rainfall $_{0000}$

Conclusion

Tail dependency

Take into account the tail dependence.

Definition (residual tail dependence coefficient)

Let X, Y, two r.v. of c.d.f F and G respectively.

$$\bar{\chi} = \lim_{q \to 1} \frac{\log \left(\mathbb{P}\{X > F^{-1}(q)\} \mathbb{P}\{Y > G^{-1}(q)\} \right)}{\log \left(\mathbb{P}\{X > F^{-1}(q), Y > G^{-1}(q)\} \right)} - 1$$

 $\underset{\scriptstyle 0000}{\text{Back to rainfall}}$

Conclusion

Tail dependency

Take into account the tail dependence.

Definition (residual tail dependence coefficient)

Let X, Y, two r.v. of c.d.f F and G respectively.

$$\bar{\chi} = \lim_{q \to 1} \frac{\log \left(\mathbb{P}\{X > F^{-1}(q)\} \mathbb{P}\{Y > G^{-1}(q)\} \right)}{\log \left(\mathbb{P}\{X > F^{-1}(q), Y > G^{-1}(q)\} \right)} - 1$$

 $ar{\chi} \in [-1,1]$

Dissimilarity

Introd	ucti	on

Back to rainfall

 $\underset{\circ\circ\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Dissimilarity

$$D(i,j) = \lambda \widehat{KL}_{i,j} + (1-\lambda) \left(1 - \widehat{\overline{\chi}}_{i,j}\right)$$
, with $\lambda \in [0,1]$.

 $\underset{\scriptstyle 0000}{\text{Back to rainfall}}$

Conclusion

Dissimilarity

$$D(i,j) = \lambda \widehat{KL}_{i,j} + (1-\lambda) \left(1 - \widehat{\overline{\chi}}_{i,j}\right)$$
, with $\lambda \in [0,1]$.

Some comments:

$$ullet$$
 we use $1-\widehat{ar{\chi}}$ and not $\widehat{ar{\chi}}$

 \Rightarrow 2 stations are close if they are dependent ;

Back to rainfall $_{0000}$

Conclusion

Dissimilarity

$$D(i,j) = \lambda \widehat{KL}_{i,j} + (1-\lambda) \left(1 - \overline{\hat{\chi}}_{i,j}\right)$$
, with $\lambda \in [0,1]$.

Some comments:

Back to rainfall $_{0000}$

Conclusion

Dissimilarity

$$D(i,j) = \lambda \widehat{KL}_{i,j} + (1-\lambda) \left(1 - \overline{\hat{\chi}}_{i,j}\right)$$
, with $\lambda \in [0,1]$.

Some comments:

- we use $1 \hat{\bar{\chi}}$ and not $\hat{\bar{\chi}}$ \Rightarrow 2 stations are close if they are dependent ;
- $\lambda = 1 \Leftrightarrow$ marginal law ;
- $\lambda = 0 \Leftrightarrow$ dependence structure.

Introduction 00	Theoretical tools ○○○○○○○○○○○	Back to rainfall	Conclusion

Clustering

Theoretical tools

Back to rainfall

Conclusion

Algorithm

Back to rainfall

Theoretical tools

Back to rainfall $_{\circ \bullet \circ \circ}$

Conclusion

q = 0.9, λ = 0.5

Figure: 2 clusters

Theoretical tools

Back to rainfall $_{\circ \bullet \circ \circ}$

Conclusion

q = 0.9, λ = 0.5

Figure: 3 clusters

Theoretical tools

Back to rainfall $_{\circ \bullet \circ \circ}$

Conclusion

q = 0.9, λ = 0.5

Figure: 4 clusters

Theoretical tools

Back to rainfall 00000

Conclusion

Changing points: 3 clusters, q = 0.9

Figure: $\lambda = 0.5$

Theoretical tools

Back to rainfall 0000

Conclusion

Constant points: $\lambda = 0.5$, $q_{\min} = 0.74$

Figure: 3 clusters

Back to rainfall

Conclusion

- Climatologically coherent clusters
- Tool to help choosing the threshold level
- Implementation in a R package

Conclusion

- Climatologically coherent clusters
- Tool to help choosing the threshold level
- Implementation in a R package

Perspectives:

- Analyze whether the clusters are going to evolve in the climate change framework, using results of simulations
- Choice and cost of the clustering algorithm
- Statistical estimator study

Introd	uction

Theoretical tools

Back to rainfall

 $\underset{\circ\circ\bullet\circ\circ}{\text{Conclusion}}$

Conclusion

Thanks for your attention!

Back to rainfall

Conclusion

Bernard, E., Naveau, P., Vrac, M., and Mestre, O. (2013). Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France. Journal of Climate, 26(20):7929–7937.

- Kaufman, L. and Rousseeuw, P. J. (1987). Clustering by means of medoids.
- Naveau, P., Guillou, A., and Rietsch, T. (2014).

A non-parametric entropy-based approach to detect changes in climate extremes.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(5):861–884.

Rousseeuw, P. J. (1987).

Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.

Journal of Computational and Applied Mathematics, 20:53 – 65.

Tail dependency, gaussian case

Example (Bivariate Gaussian distribution)

Let $X = (X_1, X_2)$ bivariate gaussian distributed random variable, of correlation parameter ρ . Then $\bar{\chi}(X_1, X_2) = \rho$

Tail dependency, gaussian case

Example (Bivariate Gaussian distribution)

Let $X = (X_1, X_2)$ bivariate gaussian distributed random variable, of correlation parameter ρ . Then $\bar{\chi}(X_1, X_2) = \rho$

Figure: $\rho = 0.9$

Figure: $\rho = 0$

Figure: $\rho = -0.9$

Clustering: evaluation

Clustering: evaluation

Definition (Silhouette coefficient, [Rousseeuw, 1987])

Let's consider a point *i*.

- *a_i* the average dissimilarity of point *i* with the other points of its cluster;
- *b_i* the minimal average dissimilarity of point *i* to any other cluster.

We can now define the silhouette coefficient of *i* by:

$$s_i = \left\{egin{array}{cccc} 1 - rac{a_i}{b_i} & ext{if } a_i < b_i ext{ and } |C_i| > 1 \ 0 & ext{if } a_i = b_i ext{ or } |C_i| = 1 \ rac{b_i}{a_i} - 1 & ext{if } a_i > b_i ext{ and } |C_i| > 1 \end{array}
ight.$$

Changing points: method

Algorithm 1 Detect changing points between C_1 and C_2

Require: 2 clusterings of *n* points, C_1 and C_2

- 1: Initialize empty list: moving_points
- 2: Build A_1 and A_2 , adjacency matrices of C_1 and C_2
- 3: $D = A_1 A_2$ 4: $S_i = \sum_{j=1}^{n} \mathbb{1}_{D_{i,j} \in \{-1,1\}}$ 5: while $S \neq 0 \in \mathbb{R}^n$ do 6: $u = \underset{i \in [1,n]}{\operatorname{argmax}} \{S_i\}$ 7: Append u to moving_points
- 8: $D_{u,\cdot} = 0$ and $D_{\cdot,u} = 0$
- 9: Recompute S
- 10: end while
- 11: return moving_points

Figure: 2 clusters

Figure: 3 clusters

Figure: 4 clusters

Figure: 5 clusters

Figure: 6 clusters

Figure: 7 clusters

Figure: 8 clusters

Figure: 9 clusters

Figure: 2 clusters

Figure: 3 clusters

Figure: 4 clusters

Figure: 5 clusters

Figure: 6 clusters

Figure: 7 clusters

Figure: 8 clusters

Figure: 9 clusters

Figure: 2 clusters

Figure: 3 clusters

Figure: 4 clusters

Figure: 5 clusters

Figure: 6 clusters

Figure: 7 clusters

Figure: 8 clusters

Figure: 9 clusters

Figure: 2 clusters

Figure: 3 clusters

Figure: 4 clusters

Figure: 5 clusters

Figure: 6 clusters

Figure: 7 clusters

Figure: 8 clusters

Figure: 9 clusters

Figure: 2 clusters

Figure: 3 clusters

Figure: 4 clusters

Figure: 5 clusters

Figure: 6 clusters

Figure: 7 clusters

Figure: 8 clusters

Figure: 9 clusters

Figure: $\lambda = 1$

Figure: $\lambda = 0.75$

Figure: $\lambda = 0.5$

Figure: $\lambda = 0.25$

Figure: $\lambda = 0$

Changing points, $\lambda=1$

Points that change of clusters, season fall, 4 clusters

the second secon

Points that change of clusters, season fall, 3 clusters

Changing points, $\lambda = 0.75$

Points that change of clusters, season fall, 4 clusters

Points that change of clusters, season fall, 3 clusters ĝ 8 change of clu 09 % of points that ŝ 20 0 0.0 0.2 0.6 0.8 0.4 Threshold quantile level

Changing points, $\lambda=0.5$

Points that change of clusters, season fall, 4 clusters

Points that change of clusters, season fall, 3 clusters ĝ 8 change of clus 09 % of points that ŝ 20 c 0.0 0.2 0.8 0.4 0.6 Threshold quantile level

13/19

Changing points, $\lambda = 0.25$

No changing, 2 clusters

Figure: $q_{\min} = 0.77$

No changing, 3 clusters

Figure: $q_{\min} = 0.74$

No changing, 4 clusters

Figure: $q_{\min} = 0.89$

Figure: $q_{\min} = 0.83$

No changing, 5 clusters

Figure: $q_{\min} = 0.9$

Figure: $q_{\min} = 0.81$

[Bernard et al., 2013]

Figure: 4 clusters