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Context

Dataset: daily France rainfall in mm (1mm = 1L/m2), from 1976
to 2015, at 174 Meteo-France stations.

Figure: Weather stations
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Objectives

Aim:
Construct coherent groups of locations according to the nature
of the extreme’s rainfall/wind/temperature there (e.g. spatial
group)

Constraints:
Non-parametric approach (no fit, few assumptions)
Good scaling to large datasets
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Divergence

Mathematical tool to quantify the similarity between two
probability distributions.

Kullback-Leibler directed divergence is asymmetric. Symmetrized
quantity:

Definition (Kullback-Leibler divergence)
Let f and g be two probability density functions. Then:

D(f , g) = J(f ; g) + J(g ; f )

= Ef

[
log
(
f (X )

g(X )

)]
+ Eg

[
log
(
g(Y )

f (Y )

)]
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Extreme

Excesses over a threshold.
Variable of interest: Xu = [X |X > u], for some well-chosen and
high threshold u.
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Extreme

Excesses over a threshold.
Variable of interest: Xu = [X |X > u], for some well-chosen and
high threshold u.

Let X r.v. with density f (and tail F ). Then, for any threshold u,
has the following characteristics:

density fu(x) = f (x)

F (u)
1{x>u}

tail F u(x) = F (x)

F (u)
1{x>u}
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Kullback-Leibler divergence tailored for large excesses

KL adapted for univariate extremes, in terms of excesses, in
[Naveau et al., 2014]. We can consider the quantity:

D(fu, gu) = J(fu; gu) + J(gu; fu)

with J(fu; gu) = Efu

[
log
(

fu(Xu)
gu(Xu)

)]
.

Proposition (from [Naveau et al., 2014])
D(fu, gu) is equivalent (under assumptions), as u → τ , to:

K (fu, gu) = −L(fu; gu)− L(gu; fu)

with: L(fu; gu) = Ef

[
log
(
G(X )

G(u)

)
|X > u

]
− 1.

→ easy construction of a plug-in estimator
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Tail dependency

Take into account the tail dependence.

Definition (residual tail dependence coefficient)

Let X ,Y , two r.v. of c.d.f F and G respectively.

P{A}P{B}
P{A ∩ B}

χ̄ ∈ [−1, 1]
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Dissimilarity

D(i , j) = λK̂Li ,j + (1− λ)
(
1− ̂̄χi ,j

)
, with λ ∈ [0, 1].

Some comments:
we use 1− ̂̄χ and not ̂̄χ
⇒ 2 stations are close if they are dependent ;
λ = 1 ⇔ marginal law ;
λ = 0 ⇔ dependence structure.
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Clustering

We consider a simple and classic algorithm: Partitioning
Around Medoids (PAM), also called k-medoids, proposed by
[Kaufman and Rousseeuw, 1987].
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Algorithm
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q = 0.9, λ = 0.5

Figure: 2 clusters
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q = 0.9, λ = 0.5

Figure: 3 clusters
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q = 0.9, λ = 0.5

Figure: 4 clusters
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Changing points: 3 clusters, q = 0.9

Figure: λ = 0.5
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Constant points: λ = 0.5, qmin = 0.74

Figure: 3 clusters
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Conclusion

Climatologically coherent clusters
Tool to help choosing the threshold level
Implementation in a R package

Perspectives:
Analyze whether the clusters are going to evolve in the climate
change framework, using results of simulations
Choice and cost of the clustering algorithm
Statistical estimator study
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Conclusion

Thanks for your attention!
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Tail dependency, gaussian case

Example (Bivariate Gaussian distribution)
Let X = (X1,X2) bivariate gaussian distributed random variable, of
correlation parameter ρ.
Then χ̄ (X1,X2) = ρ

Figure: ρ = 0.9 Figure: ρ = 0 Figure: ρ = −0.9
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Clustering: evaluation
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Clustering: evaluation

Definition (Silhouette coefficient, [Rousseeuw, 1987])
Let’s consider a point i .

ai the average dissimilarity of point i with the other points of
its cluster;
bi the minimal average dissimilarity of point i to any other
cluster.

We can now define the silhouette coefficient of i by:

si =


1− ai

bi
if ai < bi and |Ci | > 1

0 if ai = bi or |Ci | = 1
bi
ai
− 1 if ai > bi and |Ci | > 1
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Changing points: method

Algorithm 1 Detect changing points between C1 and C2

Require: 2 clusterings of n points, C1 and C2
1: Initialize empty list: moving_points
2: Build A1 and A2, adjacency matrices of C1 and C2
3: D = A1 − A2

4: Si =
n∑

j=1
1Di,j∈{−1,1}

5: while S 6= 0 ∈ Rn do
6: u = argmax

i∈J1,nK
{Si}

7: Append u to moving_points
8: Du,· = 0 and D·,u = 0
9: Recompute S

10: end while
11: return moving_points

4 / 19



q = 0.9, λ = 1

Figure: 2 clusters
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q = 0.9, λ = 1

Figure: 3 clusters

5 / 19



q = 0.9, λ = 1

Figure: 4 clusters
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q = 0.9, λ = 1

Figure: 5 clusters
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q = 0.9, λ = 1

Figure: 6 clusters
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q = 0.9, λ = 1

Figure: 7 clusters
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q = 0.9, λ = 1

Figure: 8 clusters
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q = 0.9, λ = 1

Figure: 9 clusters
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q = 0.9, λ = 0.75

Figure: 2 clusters
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q = 0.9, λ = 0.75

Figure: 3 clusters
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q = 0.9, λ = 0.75

Figure: 4 clusters
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q = 0.9, λ = 0.75

Figure: 5 clusters
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q = 0.9, λ = 0.75

Figure: 6 clusters
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q = 0.9, λ = 0.75

Figure: 7 clusters
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q = 0.9, λ = 0.75

Figure: 8 clusters
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q = 0.9, λ = 0.75

Figure: 9 clusters
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q = 0.9, λ = 0.5

Figure: 2 clusters
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q = 0.9, λ = 0.5

Figure: 3 clusters
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q = 0.9, λ = 0.5

Figure: 4 clusters
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q = 0.9, λ = 0.5

Figure: 5 clusters
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q = 0.9, λ = 0.5

Figure: 6 clusters
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q = 0.9, λ = 0.5

Figure: 7 clusters
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q = 0.9, λ = 0.5

Figure: 8 clusters
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q = 0.9, λ = 0.5

Figure: 9 clusters
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q = 0.9, λ = 0.25

Figure: 2 clusters
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q = 0.9, λ = 0.25

Figure: 3 clusters
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q = 0.9, λ = 0.25

Figure: 4 clusters
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q = 0.9, λ = 0.25

Figure: 5 clusters
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q = 0.9, λ = 0.25

Figure: 6 clusters
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q = 0.9, λ = 0.25

Figure: 7 clusters
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q = 0.9, λ = 0.25

Figure: 8 clusters
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q = 0.9, λ = 0.25

Figure: 9 clusters

8 / 19



q = 0.9, λ = 0

Figure: 2 clusters
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q = 0.9, λ = 0

Figure: 3 clusters
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q = 0.9, λ = 0

Figure: 4 clusters
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q = 0.9, λ = 0

Figure: 5 clusters
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q = 0.9, λ = 0

Figure: 6 clusters
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q = 0.9, λ = 0

Figure: 7 clusters
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q = 0.9, λ = 0

Figure: 8 clusters
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q = 0.9, λ = 0

Figure: 9 clusters
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Silhouette with number of clusters

Figure: λ = 1
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Silhouette with number of clusters

Figure: λ = 0.75
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Silhouette with number of clusters

Figure: λ = 0.5
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Silhouette with number of clusters

Figure: λ = 0.25
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Silhouette with number of clusters

Figure: λ = 0
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Changing points, λ = 1
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Changing points, λ = 0.75
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Changing points, λ = 0.5

13 / 19



Changing points, λ = 0.25
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No changing, 2 clusters

Figure: qmin = 0.77

15 / 19



No changing, 3 clusters

Figure: qmin = 0.74
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No changing, 4 clusters

Figure: qmin = 0.89 Figure: qmin = 0.83
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No changing, 5 clusters

Figure: qmin = 0.9 Figure: qmin = 0.81
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[Bernard et al., 2013]

Figure: 4 clusters
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