Distribution-free uncertainty quantification (for time series)

Margaux Zaffran 28/06/2022

Mathematical Methods of Modern Statistics, best city in the world (a.k.a. Marseille)

Aymeric Dieuleveut

Polytechnique

Ecole

Paris

EDF R&D FiME *Paris*

EDF R&D LMO *Paris*

INRIA IDESP *Montpellier*

Introduction to Split Conformal Prediction

- $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ realization of random variable (X, Y)
- *n* training samples $(x_i, y_i)_{i=1}^n$
- Goal: predict an unseen point y_{n+1} at x_{n+1} with confidence
- Miscoverage level $\alpha \in [0, 1]$
- ▶ Build a predictive interval C_{α} such that:

$$\mathbb{P}\left\{Y_{n+1}\in\mathcal{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha,$$
(1)

and \mathcal{C}_{α} should be as small as possible, in order to be informative.

Split conformal prediction: toy example

Split conformal prediction: training step

Split conformal prediction: calibration step

Split conformal prediction: prediction step

 Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})

- Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm on your proper training set

- Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm on your proper training set
- 3. Get predictions with this fitted model \hat{A} on the calibration set

- Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm on your proper training set
- 3. Get predictions with this fitted model \hat{A} on the calibration set
- Assign a conformity score (the smaller the better) to each prediction (s(Â(x_i), y_i))

- Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm on your proper training set
- 3. Get predictions with this fitted model \hat{A} on the calibration set
- 4. Assign a conformity score (the smaller the better) to each prediction $(s(\hat{A}(x_i), y_i)) \Rightarrow$ obtain a set of n_{cal} conformity scores $S = \{s_i = s(\hat{A}(x_i), y_i), \text{ for } i \text{ such that } (x_i, y_i) \in Cal\}$

- Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm on your proper training set
- 3. Get predictions with this fitted model \hat{A} on the calibration set
- Assign a conformity score (the smaller the better) to each prediction (s(Â(x_i), y_i)) ⇒ obtain a set of n_{cal} conformity scores S = {s_i = s(Â(x_i), y_i), for i such that (x_i, y_i) ∈ Cal}
- 5. Compute the $1 \alpha^1$ quantile of these scores, noted $q_{1-\alpha}(S)$

¹a correction is needed to ensure finite sample guarantees: the $(1-\alpha)(1+\frac{1}{n_{\rm cal}})$ quantile is used instead.

- Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm on your proper training set
- 3. Get predictions with this fitted model \hat{A} on the calibration set
- Assign a conformity score (the smaller the better) to each prediction (s(Â(x_i), y_i)) ⇒ obtain a set of n_{cal} conformity scores S = {s_i = s(Â(x_i), y_i), for i such that (x_i, y_i) ∈ Cal}
- 5. Compute the $1 \alpha^1$ quantile of these scores, noted $q_{1-\alpha}(S)$
- 6. For a new point x_{n+1} , output $C_{\alpha}(x_{n+1}) = \{y \text{ such that } s(\hat{A}(x_{n+1}), y) \le q_{1-\alpha}(S)\}$

¹a correction is needed to ensure finite sample guarantees: the $(1-\alpha)(1+\frac{1}{n_{\rm cal}})$ quantile is used instead.

$$\mathcal{C}_{lpha}(x_{n+1}) = \{y \text{ such that } s(\hat{A}(x_{n+1}), y) \leq q_{1-lpha}(S)\}$$

• In regression, if
$$s(\hat{A}(x_i), y) = |\hat{y}_i - y|$$
, then
 $C_{\alpha}(x_{n+1}) = [\hat{A}(x_{n+1}) \pm q_{1-\alpha}(S)]$

$$\mathcal{C}_{lpha}(x_{n+1}) = \{y ext{ such that } s(\hat{A}(x_{n+1}), y) \leq q_{1-lpha}\left(S
ight)\}$$

- In regression, if $s(\hat{A}(x_i), y) = |\hat{y}_i y|$, then $C_{\alpha}(x_{n+1}) = [\hat{A}(x_{n+1}) \pm q_{1-\alpha}(S)]$
- Extension: $s(\hat{A}(x_i), y) = \frac{|\hat{y}_i y|}{\hat{\sigma}(x_i)}$ leading to $C_{\alpha}(x_{n+1}) = [\hat{y}_{n+1} \pm \hat{\sigma}(x_{n+1}) \times q_{1-\alpha}(S)]$ Lei et al. (2018)

$$\mathcal{C}_{\alpha}(x_{n+1}) = \{y \text{ such that } s(\hat{A}(x_{n+1}), y) \leq q_{1-\alpha}(S)\}$$

- In regression, if $s(\hat{A}(x_i), y) = |\hat{y}_i y|$, then $C_{\alpha}(x_{n+1}) = [\hat{A}(x_{n+1}) \pm q_{1-\alpha}(S)]$
- Extension: $s(\hat{A}(x_i), y) = \frac{|\hat{y}_i y|}{\hat{\sigma}(x_i)}$ leading to $C_{\alpha}(x_{n+1}) = [\hat{y}_{n+1} \pm \hat{\sigma}(x_{n+1}) \times q_{1-\alpha}(S)]$ Lei et al. (2018)
- Beyond mean regression: Romano et al. (2019), many others

$$\mathcal{C}_{lpha}(x_{n+1}) = \{y \text{ such that } s(\hat{A}(x_{n+1}), y) \leq q_{1-lpha}\left(S
ight)\}$$

- In regression, if $s(\hat{A}(x_i), y) = |\hat{y}_i y|$, then $C_{\alpha}(x_{n+1}) = [\hat{A}(x_{n+1}) \pm q_{1-\alpha}(S)]$
- Extension: $s(\hat{A}(x_i), y) = \frac{|\hat{y}_i y|}{\hat{\sigma}(x_i)}$ leading to $C_{\alpha}(x_{n+1}) = [\hat{y}_{n+1} \pm \hat{\sigma}(x_{n+1}) \times q_{1-\alpha}(S)]$ Lei et al. (2018)
- Beyond mean regression: Romano et al. (2019), many others
- Classification

$$\mathcal{C}_{\alpha}(x_{n+1}) = \{y \text{ such that } s(\hat{A}(x_{n+1}), y) \leq q_{1-\alpha}(S)\}$$

- In regression, if $s(\hat{A}(x_i), y) = |\hat{y}_i y|$, then $C_{\alpha}(x_{n+1}) = [\hat{A}(x_{n+1}) \pm q_{1-\alpha}(S)]$
- Extension: $s(\hat{A}(x_i), y) = \frac{|\hat{y}_i y|}{\hat{\sigma}(x_i)}$ leading to $C_{\alpha}(x_{n+1}) = [\hat{y}_{n+1} \pm \hat{\sigma}(x_{n+1}) \times q_{1-\alpha}(S)]$ Lei et al. (2018)
- Beyond mean regression: Romano et al. (2019), many others
- Classification
- \hookrightarrow what is important is the definition of the conformity scores

This procedure enjoys finite sample guarantee proposed and proved in Vovk et al. (2005) and Lei et al. (2018).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable, and we apply split conformal prediction on $(X_i, Y_i)_{i=1}^n$ to predict an interval on X_{n+1} , $\hat{C}_{\alpha}(X_{n+1})$. Then we have:

$$\mathbb{P}\left\{Y_{n+1}\in\hat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\hat{\varepsilon}_j$ have a continuous joint distribution, we also have an upper bound:

$$\mathbb{P}\left\{Y_{n+1}\in\hat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\leq 1-\alpha+\frac{1}{n_{cal}+1}.$$

Split conformal prediction is simple to compute and works:

- any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;

• finite sample.

Split conformal prediction is simple to compute and works:

- any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;
 - \hookrightarrow the scores need to be exchangeable (but then it would not work with any regression algorithm)
- finite sample.

Split conformal prediction is simple to compute and works:

- any regression algorithm (neural nets, random forest...);
- distribution-free as long as the data is exchangeable;
 - \hookrightarrow the scores need to be exchangeable (but then it would not work with any regression algorithm)
- finite sample.

Two interests:

- quantify the uncertainty of the underlying model $\hat{\mu}$
- output predictive regions

Conformal prediction and time series, what's the issue?

- Data: T_0 observations $(x_1, y_1), \ldots, (x_{T_0}, y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$
- Aim: predict the response values as well as predictive intervals for T₁ subsequent observations x_{T0+1},..., x_{T0+T1}
- \hookrightarrow Build the smallest interval \mathcal{C}^t_{α} such that:

 $\mathbb{P}\left\{Y_t \in \mathcal{C}^t_{\alpha}\left(X_t\right)\right\} \ge 1 - \alpha, \text{ for } t \in [\![T_0 + 1, T_0 + T_1]\!].$

Time series are not exchangeable

Figure 3: Shift

Figure 4: Time dependence

100 200 300 400 500

²Images from Yannig Goude class material.

Non-exchangeable even if the noise is exchangeable

Assume the following model:

$$Y_t = f_t(X_t) + \varepsilon_t$$
, for $t \in \mathbb{N}^*$,

for some function f_t , and some noise ε_t .

Even if the noise ε_t is exchangeable, we can produce dependent residuals.

Figure 5: Auto-Regressive residuals

Adaptive Conformal Inference

Online sequential split conformal prediction (OSSCP)

Figure 6: Diagram describing the online sequential split conformal prediction.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \operatorname{err}_t \right) \tag{2}$$

with:

$$\operatorname{err}_{t} := \begin{cases} 1 \text{ if } y_{t} \notin \hat{\mathcal{C}}_{\alpha_{t}}(x_{t}), \\ 0 \text{ otherwise }, \end{cases}$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \operatorname{err}_t \right) \tag{2}$$

with:

$$\operatorname{err}_{t} := \begin{cases} 1 \text{ if } y_{t} \notin \hat{\mathcal{C}}_{\alpha_{t}}(x_{t}), \\ 0 \text{ otherwise }, \end{cases}$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Refitting the model may be insufficient \Rightarrow adapt the quantile level used on the calibration's scores. (Distribution shift)

The proposed update scheme is the following:

$$\alpha_{t+1} := \alpha_t + \gamma \left(\alpha - \operatorname{err}_t \right) \tag{2}$$

with:

$$\operatorname{err}_{t} := \begin{cases} 1 \text{ if } y_{t} \notin \hat{\mathcal{C}}_{\alpha_{t}}(x_{t}), \\ 0 \text{ otherwise }, \end{cases}$$

and $\alpha_1 = \alpha$, $\gamma \ge 0$.

Intuition: if we did make an error, the interval was too small so we want to increase its length by taking a higher quantile (a smaller α_t). Reversely if we included the point.

Gibbs and Candès (2021) provide asymptotic validity result for any distribution.

Visualisation of the procedure

Visualisation of the procedure

Figure 7: Visualisation of ACI with different values of γ ($\gamma = 0$, $\gamma = 0.01$, $\gamma = 0.05$)

Concluding remarks

• Analysis of ACI in the context of time series

- Analysis of ACI in the context of time series
- Theoretical and numerical analysis of the impact of γ in the length of the resulting intervals

- Analysis of ACI in the context of time series
- Theoretical and numerical analysis of the impact of γ in the length of the resulting intervals
- Empirical proposition of an adaptive choice of $\gamma:$ AgACI

- Analysis of ACI in the context of time series
- Theoretical and numerical analysis of the impact of γ in the length of the resulting intervals
- Empirical proposition of an adaptive choice of $\gamma:$ AgACI
- Extensive synthetic experiments on increasting temporal dependence (AgACI, various ACI, benchmark methods)

- Analysis of ACI in the context of time series
- Theoretical and numerical analysis of the impact of γ in the length of the resulting intervals
- Empirical proposition of an adaptive choice of $\gamma:$ AgACI
- Extensive synthetic experiments on increasting temporal dependence (AgACI, various ACI, benchmark methods)
- Application to forecasting French electricity spot prices

- Analysis of ACI in the context of time series
- Theoretical and numerical analysis of the impact of γ in the length of the resulting intervals
- Empirical proposition of an adaptive choice of $\gamma:$ AgACI
- Extensive synthetic experiments on increasting temporal dependence (AgACI, various ACI, benchmark methods)
- Application to forecasting French electricity spot prices
- → Perspective: refined analysis of AgACI and expert aggregation

- Analysis of ACI in the context of time series
- Theoretical and numerical analysis of the impact of γ in the length of the resulting intervals
- Empirical proposition of an adaptive choice of $\gamma:$ AgACI
- Extensive synthetic experiments on increasting temporal dependence (AgACI, various ACI, benchmark methods)
- Application to forecasting French electricity spot prices
- → Perspective: refined analysis of AgACI and expert aggregation
 - Theoretical guarantees about validity: *what happens to the asymptotic result when aggregated?*
 - $\circ~$ Analysis of the obtained efficiency
 - More data sets

Thank you! Questions?

Cesa-Bianchi, N. and Lugosi, G. (2006). *Prediction, learning, and games.* Cambridge University Press.

- Gibbs, I. and Candès, E. (2021). Adaptive Conformal Inference Under Distribution Shift. *Advances in Neural Information Processing Systems*, 34.
- Kath, C. and Ziel, F. (2021). Conformal prediction interval estimation and applications to day-ahead and intraday power markets. *International Journal of Forecasting*.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman,
 L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML 2002.* Springer.

Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *Advances in Neural Information Processing Systems*, 32.

Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.

Wisniewski, W., Lindsay, D., and Lindsay, S. (2020). Application of conformal prediction interval estimations to market makers' net positions. Proceedings of Machine Learning Research. PMLR.

- Xu, C. and Xie, Y. (2021). Conformal prediction interval for dynamic time-series. In *Proceedings of the 38th International Conference on Machine Learning*. PMLR.
- Zaffran, M., Féron, O., Goude, Y., Josse, J., and Dieuleveut, A. (2022). Adaptive Conformal Predictions for Time Series. arXiv:2202.07282.

Definition (Exchangeability)

 $(Z_i)_{i=1}^n$ are exchangeable if for any permutation σ of [1, n] we have:

$$\mathcal{L}(Z_1,\ldots,Z_n) = \mathcal{L}(Z_{\sigma(1)},\ldots,Z_{\sigma(n)}),$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

AgACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes an optimal weighted mean of experts.

Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes an optimal weighted mean of experts.

AgACI performs 2 independent aggregations: one for each bound (the upper and lower ones).

Comparison on simulated data

$$Y_t = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$$

 $Y_t = 10\sin(\pi X_{t,1}X_{t,2}) + 20(X_{t,3} - 0.5)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t$ where the $X_{t,\cdot} \sim \mathcal{U}([0,1])$ $Y_{t} = 10 \sin (\pi X_{t,1} X_{t,2}) + 20 (X_{t,3} - 0.5)^{2} + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_{t}$ where the $X_{t,.} \sim \mathcal{U}([0,1])$ and ε_{t} is an ARMA(1,1) process:
$$\begin{split} Y_t &= 10 \sin \left(\pi X_{t,1} X_{t,2} \right) + 20 \left(X_{t,3} - 0.5 \right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} \sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA(1,1) process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \\ \text{with } \xi_t \text{ is a white noise of variance } \sigma^2. \end{split}$$

$$\begin{split} Y_t &= 10 \sin \left(\pi X_{t,1} X_{t,2} \right) + 20 \left(X_{t,3} - 0.5 \right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} \sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA(1,1) process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \\ \text{with } \xi_t \text{ is a white noise of variance } \sigma^2. \end{split}$$

• $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].

$$\begin{split} Y_t &= 10\sin\left(\pi X_{t,1}X_{t,2}\right) + 20\left(X_{t,3} - 0.5\right)^2 + 10X_{t,4} + 5X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} &\sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA(1,1) process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \\ \text{with } \xi_t \text{ is a white noise of variance } \sigma^2. \end{split}$$

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance Var(ε_t) constant to 10 (or 1).

$$\begin{split} Y_t &= 10 \sin \left(\pi X_{t,1} X_{t,2} \right) + 20 \left(X_{t,3} - 0.5 \right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} \sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA(1,1) process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \\ \text{with } \xi_t \text{ is a white noise of variance } \sigma^2. \end{split}$$

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance Var(ε_t) constant to 10 (or 1).
- We use random forest as regressor.

$$\begin{split} Y_t &= 10 \sin \left(\pi X_{t,1} X_{t,2} \right) + 20 \left(X_{t,3} - 0.5 \right)^2 + 10 X_{t,4} + 5 X_{t,5} + \varepsilon_t \\ \text{where the } X_{t,\cdot} \sim \mathcal{U}([0,1]) \text{ and } \varepsilon_t \text{ is an ARMA(1,1) process:} \\ \varepsilon_{t+1} &= \varphi \varepsilon_t + \xi_{t+1} + \theta \xi_t, \\ \text{with } \xi_t \text{ is a white noise of variance } \sigma^2. \end{split}$$

- $\varphi = \theta$ range in [0.1, 0.8, 0.9, 0.95, 0.99].
- We fix σ to keep the variance Var(ε_t) constant to 10 (or 1).
- We use random forest as regressor.
- For each setting (pair variance and φ, θ):
 - $\circ~$ 300 points, the last 100 kept for prediction and evaluation,
 - 500 repetitions,
 - $\Rightarrow\,$ in total, 100 $\times\,500=50000$ predictions are evaluated.

Visualisation of the results

Results: impact of the temporal dependence, ARMA(1,1), variance 10

Results: impact of the temporal dependence, ARMA(1,1), variance 10

Results: impact of the temporal dependence, ARMA(1,1), variance 10

- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- × EnbPI (Xu & Xie, 2021)
- + EnbPI V2

- ACI (Gibbs & Candès, 2021), $\gamma = 0.05$
- ★ AgACI

- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- × EnbPI (Xu & Xie, 2021)
- + EnbPI V2

- ACI (Gibbs & Candès, 2021), $\gamma = 0.01$
- ACI (Gibbs & Candès, 2021), γ = 0.05
- AgACI

- OSSCP (adapted from Lei et al., 2018)
- Offline SSCP (adapted from Lei et al., 2018)
- × EnbPI (Xu & Xie, 2021)
- + EnbPI V2

- ACI (Gibbs & Candès, 2021), $\gamma = 0.01$
- ACI (Gibbs & Candès, 2021), γ = 0.05
- ★ AgACI

Theoretical analysis of ACI's length

 $\underline{\rm Aim:}$ derive theoretical results on the ${\bf average}~{\rm length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

 $\underline{\rm Aim:}$ derive theoretical results on the ${\bf average}~{\rm length}$ of ACI depending on γ

 \hookrightarrow Guideline for choosing γ

<u>Approach</u>: consider extreme cases (useful in an adversarial context) with simple theoretical distributions (additional assumptions)

- 1. exchangeable
- 2. Auto-Regressive case (AR(1))

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T}\sum_{t=1}^{T}L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T}\sum_{t=1}^{T}L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{\textit{not.}}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T}\sum_{t=1}^{I}L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{not.}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T}\sum_{t=1}^{I}L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{not.}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + Q''(1-\alpha)\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Define $L(\alpha_t) = 2Q(1 - \alpha_t)$ the length of the interval predicted by the adaptive algorithm at time t, and $L_0 = 2Q(1 - \alpha)$ the length of the interval predicted by the non-adaptive algorithm ($\gamma = 0$).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated at each time, and other assumptions.

Then, for all $\gamma > 0$, $(\alpha_t)_{t>0}$ forms a Markov Chain, that admits a stationary distribution π_{γ} , and

$$\frac{1}{T}\sum_{t=1}^{T}L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma}}[L] \stackrel{not.}{=} \mathbb{E}_{\tilde{\alpha} \sim \pi_{\gamma}}[L(\tilde{\alpha})].$$

$$\mathbb{E}_{\pi_{\gamma}}[L] = L_0 + \frac{\mathcal{Q}''(1-\alpha)}{2}\frac{\gamma}{2}\alpha(1-\alpha) + O(\gamma^{3/2}).$$

Theorem

Assume the residuals follow an AR(1) process: $\hat{\varepsilon}_{t+1} = \varphi \hat{\varepsilon}_t + \xi_{t+1}$ with $(\xi_t)_t$ i.i.d. random variables and other assumptions, we have:

$$\frac{1}{T}\sum_{t=1}^{T}L(\alpha_t) \xrightarrow[T \to +\infty]{a.s.} \mathbb{E}_{\pi_{\gamma,\varphi}}[L]$$

Numerical analysis of ACI's length: AR(1) case

Figure 8: Average length depending on γ for each φ .

Figure 9: γ^* minimizing the average length for each φ .

Price prediction with confidence in 2019

Electricity Spot prices

Figure 10: Drawing of spot auctions mechanism

French Electricity Spot prices data set: visualisation

Figure 11: Representation of the French electricity spot price, from 2016 to 2019.

French Electricity Spot prices data set: extract

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:	÷	:	:	:	÷
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
:	÷	:	•	:	÷
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/01/16 1PM	35.66	34.60	20.04	69500	Monday
:	÷			:	:

Table 1: Extract of the built data set, for French electricity spot price forecasting.

French Electricity Spot prices data set: extract

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:		:	:	:	÷
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
	÷	•			÷
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/01/16 1PM	35.66	34.60	20.04	69500	Monday
:	÷	:	:	:	÷

 Table 1: Extract of the built data set, for French electricity spot price forecasting.

• $y_t \in \mathbb{R}$

French Electricity Spot prices data set: extract

Date and time	Price	Price D-1	Price D-7	For. cons.	DOW
11/01/16 0PM	21.95	15.58	13.78	58800	Monday
11/01/16 1PM	20.04	19.05	13.44	57600	Monday
:	÷	:	:	:	÷
12/01/16 0PM	21.51	21.95	25.03	61600	Tuesday
12/01/16 1PM	19.81	20.04	24.42	59800	Tuesday
:	÷	:	:		÷
18/01/16 0PM	38.14	37.86	21.95	70400	Monday
18/ <mark>01</mark> /16 1PM	35.66	34.60	20.04	69500	Monday
:	÷	:	:	:	÷

 Table 1: Extract of the built data set, for French electricity spot price forecasting.

- $y_t \in \mathbb{R}$
- $x_t \in \mathbb{R}^d$

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

 $\circ y_t \in \mathbb{R}$

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

o
$$y_t \in \mathbb{R}$$

o $x_t \in \mathbb{R}^d$, with $d = 24 + 24 + 1 + 7 = 56$
24 prices of the day before

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

y_t ∈ ℝ
x_t ∈ ℝ^d, with d = 24 + 24 + 1 + 7 = 56
24 prices of the day before
24 prices of the 7 days before

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

y_t ∈ ℝ
x_t ∈ ℝ^d, with d = 24 + 24 + 1 + 7 = 56
24 prices of the day before.
24 prices of the 7 days before.
Forecasted consumption.

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models

y_t ∈ ℝ
x_t ∈ ℝ^d, with d = 24 + 24 + 1 + 7 = 56
24 prices of the day before
24 prices of the 7 days before
Forecasted consumption
Encoded day of the week

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $\circ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
 - $\circ~$ 3 years for training/calibration, i.e. $~T_0=1096~observations$

- Forecast for the year 2019.
- Random forest regressor.
- One model per hour, we concatenate the predictions afterwards.
- \hookrightarrow 24 models
 - $\circ y_t \in \mathbb{R}$
 - $\circ x_t \in \mathbb{R}^d$, with d = 24 + 24 + 1 + 7 = 56
 - $\circ~$ 3 years for training/calibration, i.e. $~{\cal T}_0=1096~observations$
 - $\circ~1$ year to forecast, i.e. ${\it T}_1=365$ observations

Performance on predicted French electricity Spot price for the year 2019

Performance on predicted French electricity Spot price: visualisation of a day

Figure 12: French electricity spot price, its prediction and its uncertainty with AgACI.

Available methods for non-exchangeable data, in the context of time series

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and re-calibrate)

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and re-calibrate)

Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split

Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split

Usual ideas from the time series literature:

- Consider an online procedure (for each new data, re-train and re-calibrate)
 - \hookrightarrow update to recent observations (trend impact, period of the seasonality, dependence...)
- Use a sequential split
 - \hookrightarrow use only the past so as to correctly estimate the variance of the residuals (using the future leads to optimistic residuals and underestimation of their variance)

Online sequential split conformal prediction (OSSCP)

Figure 14: Diagram describing the online sequential split conformal prediction.

Online sequential split conformal prediction (OSSCP)

Figure 14: Diagram describing the online sequential split conformal prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

Online sequential split conformal prediction (OSSCP)

Figure 14: Diagram describing the online sequential split conformal prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

```
\hookrightarrow tested on real time series
```

EnbPI, Xu and Xie (2021)

Figure 15: Diagram describing the EnbPI algorithm.

EnbPI, Xu and Xie (2021)

Figure 15: Diagram describing the EnbPI algorithm.

- \hookrightarrow tested on other real time series
- $\hookrightarrow\,$ compared to offline methods