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Introduction to Split Conformal Prediction



Setting

• (x , y) 2 Rd ⇥R realization of random variable (X ,Y )

• n training samples (xi , yi )
n
i=1

• Goal: predict an unseen point yn+1 at xn+1 with confidence

• Miscoverage level ↵ 2 [0, 1]

I Build a predictive interval C↵ such that:

P {Yn+1 2 C↵ (Xn+1)} � 1� ↵, (1)

and C↵ should be as small as possible, in order to be informative.
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Split conformal prediction: toy example
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Split conformal prediction: training step
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Split conformal prediction: calibration step
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I Predict with µ̂

I Get the residuals "̂i

I Compute the

(1� ↵) empirical

quantile of the |"̂i |,
noted q1�↵ (|"̂i |)
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Split conformal prediction: prediction step
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I Build Ĉ↵(x):
[µ̂(x)± q1�↵ (|"̂i |)]
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Split Conformal Prediction: method

1. Split randomly your training data into a proper training set

(size ntrain) and a calibration set (size ncal)

2. Train your algorithm on your proper training set

3. Get predictions with this fitted model Â on the calibration set

4. Assign a conformity score (the smaller the better) to each

prediction (s(Â(xi ), yi ))

) obtain a set of ncal conformity

scores S = {si = s(Â(xi ), yi ), for i such that (xi , yi ) 2 Cal}

5. Compute the 1� ↵1 quantile of these scores, noted q1�↵ (S)

6. For a new point xn+1, output

C↵(xn+1) = {y such that s(Â(xn+1), y)  q1�↵ (S)}

1
a correction is needed to ensure finite sample guarantees: the

(1� ↵)(1 +
1

ncal
) quantile is used instead.
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Split Conformal Prediction: beyond the toy example

C↵(xn+1) = {y such that s(Â(xn+1), y)  q1�↵ (S)}

• In regression, if s(Â(xi ), y) = |ŷi � y |, then
C↵(xn+1) = [Â(xn+1)± q1�↵ (S)]

• Extension: s(Â(xi ), y) =
|ŷi � y |
�̂(xi )

leading to

C↵(xn+1) = [ŷn+1 ± �̂(xn+1)⇥ q1�↵ (S)]

Lei et al. (2018)

• Beyond mean regression: Romano et al. (2019), many others

• Classification

,! what is important is the definition of the conformity scores

7 / 16



Split Conformal Prediction: beyond the toy example

C↵(xn+1) = {y such that s(Â(xn+1), y)  q1�↵ (S)}
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C↵(xn+1) = [Â(xn+1)± q1�↵ (S)]

• Extension: s(Â(xi ), y) =
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|ŷi � y |
�̂(xi )

leading to
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Conformal prediction: theoretical guarantees

This procedure enjoys finite sample guarantee proposed and proved

in Vovk et al. (2005) and Lei et al. (2018).

Theorem
Suppose (Xi ,Yi )

n+1
i=1 are exchangeable, and we apply split

conformal prediction on (Xi ,Yi )
n
i=1 to predict an interval on Xn+1,

Ĉ↵ (Xn+1). Then we have:

P
n
Yn+1 2 Ĉ↵ (Xn+1)

o
� 1� ↵.

If, in addition, the scores "̂j have a continuous joint distribution,

we also have an upper bound:

P
n
Yn+1 2 Ĉ↵ (Xn+1)

o
 1� ↵+

1

ncal + 1
.

8 / 16



Conformal prediction: summary

Split conformal prediction is simple to compute and works:

• any regression algorithm (neural nets, random forest...);

• distribution-free as long as the data is exchangeable;

,! the scores need to be exchangeable (but then it would not

work with any regression algorithm)

• finite sample.

Two interests:

• quantify the uncertainty of the underlying model µ̂

• output predictive regions
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Conformal prediction and time series,

what’s the issue?



Framework and notations

• Data: T0 observations (x1, y1), . . . , (xT0 , yT0) in R
d ⇥R

• Aim: predict the response values as well as predictive intervals

for T1 subsequent observations xT0+1, . . . , xT0+T1

,! Build the smallest interval Ct
↵ such that:

P
�
Yt 2 Ct

↵ (Xt)
 
� 1� ↵, for t 2 JT0 + 1,T0 + T1K.
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Time series are not exchangeable

Figure 1: Trend2 Figure 2: Seasonality2

Figure 3: Shift Figure 4: Time dependence

2
Images from Yannig Goude class material. 11 / 16



Non-exchangeable even if the noise is exchangeable

Assume the following model:

Yt = ft(Xt) + "t , for t 2 N⇤,

for some function ft , and some noise "t .

Even if the noise "t is exchangeable, we can produce dependent

residuals.

Figure 5: Auto-Regressive residuals

12 / 16



Adaptive Conformal Inference



Online sequential split conformal prediction (OSSCP)

t = T0 + T1 t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Figure 6: Diagram describing the online sequential split conformal

prediction.
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Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insu�cient ) adapt the quantile level

used on the calibration’s scores.

(Distribution shift)

The proposed update scheme is the following:

↵t+1 := ↵t + � (↵� errt) (2)

with:

errt :=

(
1 if yt /2 Ĉ↵t (xt) ,

0 otherwise ,

and ↵1 = ↵, � � 0.

Intuition: if we did make an error, the interval was too small so

we want to increase its length by taking a higher quantile (a

smaller ↵t). Reversely if we included the point.

Gibbs and Candès (2021) provide asymptotic validity result for any

distribution.
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Visualisation of the procedure
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Figure 7: Visualisation of ACI with di↵erent values of � (� = 0,

� = 0.01, � = 0.05)
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Concluding remarks



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Contributions and messages

• Analysis of ACI in the context of time series

• Theoretical and numerical analysis of the impact of � in the

length of the resulting intervals

• Empirical proposition of an adaptive choice of �: AgACI

• Extensive synthetic experiments on increasting temporal

dependence (AgACI, various ACI, benchmark methods)

• Application to forecasting French electricity spot prices

,! Perspective: refined analysis of AgACI and expert
aggregation

� Theoretical guarantees about validity: what happens to the

asymptotic result when aggregated?

� Analysis of the obtained e�ciency

� More data sets

16 / 16



Thank you! Questions?
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Exchangeability

Definition (Exchangeability)

(Zi )
n
i=1 are exchangeable if for any permutation � of [1, n] we

have:

L (Z1, . . . ,Zn) = L
�
Z�(1), . . . ,Z�(n)

�
,

where L designates the joint distribution.



AgACI



AgACI: adaptive wrapper around ACI, setting

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,

2006) computes an optimal weighted mean of experts.

AgACI performs 2 independent aggregations: one for each bound

(the upper and lower ones).
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Comparison on simulated data



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1])

and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Data generation and simulation settings

Yt = 10 sin (⇡Xt,1Xt,2) + 20 (Xt,3 � 0.5)2 + 10Xt,4 + 5Xt,5 + "t

where the Xt,· ⇠ U([0, 1]) and "t is an ARMA(1,1) process:

"t+1 = '"t + ⇠t+1 + ✓⇠t ,

with ⇠t is a white noise of variance �2.

• ' = ✓ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix � to keep the variance Var("t) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ',✓):

� 300 points, the last 100 kept for prediction and evaluation,

� 500 repetitions,

) in total, 100⇥ 500 = 50000 predictions are evaluated.



Visualisation of the results

Le
ng

th
~ 

ef
fic

ie
nc

y 

Coverage
~ validity 



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

0.895 0.900 0.905

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

0.895 0.900 0.905

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Results: impact of the temporal dependence, ARMA(1,1), vari-
ance 10

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
Coverage

10

11

12

13

14

A
v
e
r
a
g
e
m
e
d
ia
n
le
n
g
t
h

0.895 0.900 0.905

OSSCP (adapted from Lei et al., 2018)

O✏ine SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), � = 0.01

ACI (Gibbs & Candès, 2021), � = 0.05

AgACI

' = ✓ =0.1

' = ✓ =0.8

' = ✓ =0.9

' = ✓ =0.95

' = ✓ =0.99



Theoretical analysis of ACI’s length



Approach

Aim: derive theoretical results on the average length of ACI

depending on �

,! Guideline for choosing �

Approach: consider extreme cases (useful in an adversarial context)

with simple theoretical distributions (additional assumptions)

1. exchangeable

2. Auto-Regressive case (AR(1))
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Theoretical analysis of ACI’s length: exchangeable case

Define L(↵t) = 2Q(1� ↵t) the length of the interval predicted by

the adaptive algorithm at time t, and L0 = 2Q(1� ↵) the length

of the interval predicted by the non-adaptive algorithm (� = 0).

Theorem

Assume the scores are exchangeable with quantile function Q

perfectly estimated at each time, and other assumptions.

Then, for all � > 0, (↵t)t>0 forms a Markov Chain, that admits a

stationary distribution ⇡� , and

1

T

TX

t=1

L(↵t)
a.s.�!

T!+1
E⇡� [L]

not.
= E↵̃⇠⇡� [L(↵̃)].

Moreover, as � ! 0,

E⇡� [L] = L0 + Q
00(1� ↵)

�

2
↵(1� ↵) + O(�3/2).
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Theoretical analysis of ACI’s length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: "̂t+1 = '"̂t + ⇠t+1

with (⇠t)t i.i.d. random variables and other assumptions, we

have:

1

T

TX

t=1

L(↵t)
a.s.�!

T!+1
E⇡�,' [L].



Numerical analysis of ACI’s length: AR(1) case
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Numerical analysis of ACI’s length: AR(1) case, cont’d
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Price prediction with confidence in 2019



Electricity Spot prices

Figure 10: Drawing of spot auctions mechanism



French Electricity Spot prices data set: visualisation
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Figure 11: Representation of the French electricity spot price, from 2016

to 2019.



French Electricity Spot prices data set: extract

Date and time Price Price D-1 Price D-7 For. cons. DOW

11/01/16 0PM 21.95 15.58 13.78 58800 Monday

11/01/16 1PM 20.04 19.05 13.44 57600 Monday

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

12/01/16 0PM 21.51 21.95 25.03 61600 Tuesday

12/01/16 1PM 19.81 20.04 24.42 59800 Tuesday

.

.
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.
.
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.
.
.
.
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.
.
.
.

18/01/16 0PM 38.14 37.86 21.95 70400 Monday

18/01/16 1PM 35.66 34.60 20.04 69500 Monday

.
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.
.
.
.
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Table 1: Extract of the built data set, for French electricity spot price

forecasting.
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Settings

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions

afterwards.

,! 24 models

� yt 2 R
� xt 2 Rd , with d = 24 + 24 + 1 + 7 = 56

� 3 years for training/calibration, i.e. T0 = 1096 observations

� 1 year to forecast, i.e. T1 = 365 observations

24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week
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24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week



Performance on predicted French electricity Spot price for the
year 2019
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Performance on predicted French electricity Spot price:
visualisation of a day
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Figure 12: French electricity spot price, its prediction and its uncertainty

with AgACI.



Available methods for non-exchangeable

data, in the context of time series



How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and
re-calibrate)

,! update to recent observations (trend impact, period of the

seasonality, dependence...)

• Use a sequential split

,! use only the past so as to correctly estimate the variance of

the residuals (using the future leads to optimistic residuals and

underestimation of their variance)
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Online sequential split conformal prediction (OSSCP)

t = T0 + T1 t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Figure 14: Diagram describing the online sequential split conformal

prediction.

Wisniewski et al. (2020); Kath and Ziel (2021); and our study

,! tested on real time series
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EnbPI, Xu and Xie (2021)

t = 0 t = T0 t = T0 + T1 

Test pointTraining set Calibration set

Figure 15: Diagram describing the EnbPI algorithm.

,! tested on other real time series

,! compared to o✏ine methods
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