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EDF R&D

FiME

Yannig Goude
EDF R&D

LMO

Julie Josse
PreMeDICaL

INRIA

• Research interests:
◦ Distribution-free uncertainty quantification

◦ Time series data

◦ Missing values

◦ Real life applications (energy, environmental, medical and societal domains)
1 / 27



Predictive Uncertainty Quantification with Missing Covariates



Yaniv Romano

Technion - Israel Institute of

Technology

Julie Josse
PreMeDICaL

INRIA

Aymeric Dieuleveut
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Quantifying predictive uncertainty

• (X ,Y ) ∈ Rd ×R random variables

• n training samples
(
X (k),Y (k)

)n
k=1

• Goal: predict an unseen point Y (n+1) at X (n+1) with confidence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive set Cα such that:

P
{
Y (n+1) ∈ Cα

(
X (n+1)

)}
≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative.

For example: α = 0.1 and obtain a 90% coverage interval

I Construction of the predictive intervals should be

◦ agnostic to the model

◦ agnostic to the data distribution

◦ valid in finite samples
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Split Conformal Prediction (SCP)1,2,3: toy example

0 1 2 3 4 5
X

−2

0

2
Y

Train Cal Test

1
1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: toy example training step

0 2 4
X

−2

0

2

Y

1

I Learn (or get) µ̂

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: toy example calibration step

0 2 4
X

−2

0

2

Y

1

I Predict with µ̂

I Get the |residuals|, a.k.a.

conformity scores

I Compute the (1− α) empirical

quantile of

S = {|residuals|}Cal ∪ {+∞},
noted q1−α (S)

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: toy example prediction step

0 2 4
X

−2

0

2

Y

1

I Predict with µ̂

I Build Ĉα(x): [µ̂(x)± q1−α (S)]

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Standard mean-regression SCP: implementation details

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get µ̂ by training the algorithm A on the proper training set

3. On the calibration set, get prediction values with µ̂

4. Obtain a set of #Cal + 1 conformity scores :

S = {Si = |µ̂(Xi )− Yi |, i ∈ Cal} ∪ {+∞}

(+ worst-case scenario)

5. Compute the 1− α empirical quantile of these scores, noted q1−α (S)

6. For a new point Xn+1, return

Ĉα(Xn+1) = [µ̂(Xn+1)− q1−α (S); µ̂(Xn+1) + q1−α (S)]
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Standard mean-regression SCP: theoretical foundation

Exchangeability(
X (k),Y (k)

)n
k=1

are exchangeable if for any permutation σ of J1, nK we have:(
X (1),Y (1)

)
, . . . ,

(
X (n),Y (n)

)
d
=
(
X (σ(1)),Y (σ(1))

)
, . . . ,

(
X (σ(n)),Y (σ(n))

)
.

Examples of exchangeable sequences

• i.i.d. samples

• The components of N



m
...
...

m

 ,


σ2

. . . γ2

γ2 . . .

σ2




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Standard mean-regression SCP: theoretical guarantees

Standard mean-regression SCP marginal validity (Vovk et al.,

2005; Lei et al., 2018)

Suppose
(
X (k),Y (k)

)n+1

k=1
are exchangeable (or i.i.d.)a. Standard mean-

regression SCP applied on
(
X (k),Y (k)

)n
k=1

outputs Ĉα (·) such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (k)

}
k∈Cal

∪ {S (n+1)} are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α +

1

#Cal + 1
.

aOnly the calibration and test data need to be exchangeable.

7 Marginal coverage: P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
��
���

�|X (n+1) = x
}
≥ 1− α
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Standard mean-regression SCP is not adaptive

0 2 4
X

−2

0

2

Y

1

I Predict with µ̂

I Build Ĉα(x): [µ̂(x)± q1−α (S)]
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Conformalized Quantile Regression (CQR)4

0 1 2 3 4 5
X

−4

−2

0

2

Y

Train Cal Test

1
4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4 training step

0 2 4
X

−4

−2

0

2

Y

1

I Learn (or get) Q̂Rlower and

Q̂Rupper

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4 calibration step

+

+

+ ++
++

+

-
--

-

++

- -

I Predict with Q̂Rlower and

Q̂Rupper

I Get the scores

S = {Si}Cal ∪ {+∞}
I Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ Si := max
{

Q̂Rlower (Xi )− Yi ,Yi − Q̂Rupper (Xi )
}

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4 prediction step

0 2 4
X

−4

−2

0

2

Y

1

I Predict with Q̂Rlower and

Q̂Rupper

I Build

Ĉα(x) = [Q̂Rlower(x)− q1−α (S); Q̂Rupper(x) + q1−α (S)]

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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CQR: theoretical guarantees

CQR marginal validity (Romano et al., 2019)

Suppose
(
X (k),Y (k)

)n+1

k=1
are exchangeable (or i.i.d.)a. CQR applied on(

X (k),Y (k)
)n
k=1

outputs Ĉα (·) such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (k)

}
k∈Cal

∪ {S (n+1)} are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α +

1

#Cal + 1
.

aOnly the calibration and test data need to be exchangeable.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)���

��|Xn+1 = x
}
≥ 1− α
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SCP is defined by the conformity score function

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Â by training the algorithm A on the proper training set

3. On the calibration set, obtain #Cal + 1 conformity scores

S = {Si = s (Â(Xi ),Yi ), i ∈ Cal} ∪ {+∞}

Ex 1: s (Â(Xi ),Yi ) := |µ̂(Xi )− Yi | in regression with standard scores

Ex 2: s (Â(Xi ),Yi ) := max
(

Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )
)

in CQR

4. Compute the 1− α empirical quantile of these scores, noted q1−α (S)

5. For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}

↪→ The definition of the conformity scores is crucial, as they incorporate almost all

the information: data + underlying model
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SCP: theoretical guarantees

SCP marginal validity (Vovk et al., 2005)

Suppose
(
X (k),Y (k)

)n+1

k=1
are exchangeable (or i.i.d.)a. SCP applied on(

X (k),Y (k)
)n
k=1

outputs Ĉα (·) such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (k)

}
k∈Cal

∪ {S (n+1)} are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α +

1

#Cal + 1
.

aOnly the calibration and test data need to be exchangeable.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)���

��|Xn+1 = x
}
≥ 1− α
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SCP: summary

Split Conformal Prediction is simple to compute and works:

3 any regression (and classification) algorithm (neural nets, random forest...);

3 distribution-free as long as the data is exchangeable;

3 finite sample.

7 Note that the theoretical guarantee is marginal over the joint distribution of

(X ,Y ), and not conditional. In particular, features conditional validity is not

ensured: there is no guarantee that for any x ∈ X

(((
((((

(((
((((

(((
((((

((

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
|X (n+1) = x

}
≥ 1− α.
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Informative conditional coverage as such is impossible

• Impossibility results

↪→ Vovk (2012); Lei and Wasserman (2014); Barber et al. (2021)

Without distribution assumption, in finite sample, a perfectly features

conditionally valid Ĉα is such that P
{

mes
(
Ĉα(x)

)
=∞

}
≥ 1− α for

any non-atomic x .

• Approximate conditional coverage

↪→ Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)

Target P(Yn+1 ∈ Ĉα|Xn+1 ∈ R(x)) ≥ 1− α
• Asymptotic (with the sample size) conditional coverage

↪→ Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.

(2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.
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Missing values are ubiquitous and challenging

Data:
(
X (k),M(k),Y (k)

)n
k=1

Y X1 X2 X3

22 5 6 3

19 6 8 NA

19 5 3 6

7 NA 9 NA

13 4 9 0

20 NA NA 1

9 8 NA 4

Mask M =

(M1 M2 M3)

0 0 0

0 0 1

0 0 0

1 0 1

0 0 0

1 1 0

0 1 0

↪→ 2d potential masks.

↪→ M can depend on X or Y (depending on the missing mechanism5).

⇒ Statistical and computational challenges.

5Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika
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Supervised learning with missing values: impute-then-regress

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted φ.

-1 -10 6 0

4 -2 2

5 1 2

0 1

-1 -10 6 0

4 -2 2

5 1 2

0 1

-4.5

1

-4.5

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

data:

φ
(
X

(k)

obs(M(k))
,M(k)

)
︸ ︷︷ ︸

U(k)=imputed X (k)

,Y (k)


n

k=1

.

↪→ we consider an impute-then-regress pipeline in this work.
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Goals of predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1− α, i.e. build the smallest Cα such that:

1. Marginal Validity (MV)

P
{
Y (n+1) ∈ Cα

(
X (n+1),M(n+1)

)}
≥ 1− α. (MV)

For example: α = 0.1 and obtain a 90% coverage interval.

2. Mask-Conditional-Validity (MCV)

P
{
Y (n+1) ∈ Cα

(
X (n+1),m

)
|M(n+1)

} a.s.
≥ 1− α. (MCV)

Il
lu
st
ra
ti
o
n
s
@
th
eo
re
m
li
n
g
er
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CP is marginally valid (MV) after imputation

Exchangeability after imputation (Z., Dieuleveut, Josse and Romano, 2023)

Assume
(
X (k),M(k),Y (k)

)n
k=1

are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation functiona φ:(
φ
(
X

(k)

obs(M(k))
,M(k)

)
,Y (k)

)n
k=1

are exchangeable.

aEven if the imputation is not accurate, the guarantee will hold.

⇒ CQR, and Conformal Prediction, applied on an imputed data set still enjoys

marginal guarantees6:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1),M(n+1)

)}
≥ 1− α.

6The upper bound also holds under continuously distributed scores.
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CQR is marginally valid on imputed data sets

Y = βTX + ε, β = (1, 2,−1)T , X and ε Gaussian.

M
ar
gi
na
l

X
fu
lly
ob
se
rv
ed

X 1
m
iss
in
g

(X
1
, X

2
) m

iss
in
g

X 2
m
iss
in
g

(X
2
, X

3
) m

iss
in
g

X 3
m
iss
in
g

(X
1
, X

3
) m

iss
in
g

0.6

0.8

1.0

1− α

A
ve
ra
ge

co
ve
ra
ge

CQR (marginal validity)

1
3 Marginal (i.e. average) coverage (MV) is indeed recovered!
7 Mask-conditional-validity (MCV) is not attained

↪→ Missing values induce heteroskedasticity

(supported by theory under (non-)parametric assumptions)
18 / 27



Conformalization step is independent of the important variable: the mask!

Observation: the α-correction term is computed

among all the data points, regardless of their mask!

0 2 4
X

−4

−2

0

2

Y

1Warning: 2d possible masks

⇒ Splitting the calibration set by mask is infeasible (lack of data)!

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 6 0 1

Test point

-1 -10 6 1

Calibration set used

Initial calibration set

3 1

Test point

0 1

Calibration set used
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Fully distribution-free MCV is necessarily uninformative

General MCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)7

If any Ĉα is distribution-free MCV then for any distribution P, for any mask

m such that PM(m) > 0, it holds:

PP⊗(n+1)

(
mes

(
Ĉα (Xn+1,m)

)
=∞

)
≥ 1− α−∆m,n ≥ 1− α−PM(m)

√
n + 1.

Irreducible term: consider Ĉα outputting Y with probability 1−α and ∅ otherwise.

∆m,n term: smaller than PM(m)
√
n + 1

↪→ gets negligible (making the lower bound nearly 1− α) for low probability

masks compared to n;

↪→ gets large (making the lower bound trivial because negative) for high

probability masks compared to n.
7An analogous statement is also available for the classification framework.
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Restricting the link between M and (XorY ) does not allow informative MCV

M ⊥⊥ X hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any Ĉα is MCV under M ⊥⊥ X , then for any distribution P such that

M ⊥⊥ X , for any mask m such that PM(m) > 0, it holds:

PP⊗(n+1)

(
mes

(
Ĉα (Xn+1,m)

)
=∞

)
≥ 1−α−∆m,n ≥ 1−α−PM(m)

√
n + 1.

Y⊥⊥M |X hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any Ĉα is MCV under Y ⊥⊥M |X , then for any distribution P such that

Y⊥⊥M |X , for any mask m such that 1√
2
≥ PM(m) > 0, it holds:

PP⊗(n+1)

(
mes

(
Ĉα (Xn+1,m)

)
=∞

)
≥ 1−α−∆m,n ≥ 1−α−2PM(m)

√
n + 1.

⇒ need to restrict both the link between M and X , as well as between M and Y .

Analogous statements are also available for the classification framework.
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CP-MDA-Nested? (Missing Data Augmentation)

Idea: for each test point, modify the calibration points to mimic the test mask

Test point

Initial calibration set

-1 -10 6 1 0

4 -2 2 1

5 1 1 3

0 1 -2

-3 0

3 1 2

Overmasked calibration set

-1 1 0

4 2 1

5 3

0 1 -2

-1 1 0

4 2 1

5 3

0 1 -2

Temporary test points

-1 1 0

4 2 1

0 1 -2

3 1 2

3 1 2

3 2

3 1 2

3 1 2

3 1 2

3 2

3 1 2

3 1 2

3 1 2

3 1 2
keep same mask

keep arbitrary selection

keep all points
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CP-MDA-Nested? achieves Mask-Conditional-Validity (MCV)

Mask-conditional-validity of CP-MDA-Nested?

(Z., Josse, Romano and Dieuleveut, 2024)

Under the assumptions that:

• M ⊥⊥ X ,

• Y⊥⊥M |X ,

•
(
X (k),M(k),Y (k)

)n+1

k=1
are i.i.d.,

• the subsampling scheme is independent of
(
X (k),Y (k)

)n+1

k=1
,

then, for almost all imputation function, CP-MDA-Nested? reaches (MCV) at

the level 1− 2α, that is:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1),m

)
|M(n+1)

} a.s.
≥ 1− 2α.
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Experiments on M ⊥⊥ X and Y⊥⊥M |X Gaussian linear data in dimension 10
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Experiments beyond independence

• Under various MAR and MNAR mechanisms, CP-MDA-Nested? maintains

empirical MCV;

• When Y 6⊥⊥M |X and the imputation is not accurate enough, CP-MDA-Nested?

fails to empirically ensure MCV, with a loss of coverage that is more critical

when subsampling.
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Take-home-messages

• CP marginal guarantees hold on the imputed data set.

• CQR (and more generally CP) fails to attain coverage conditional on the

missing pattern, i.e. MCV.

• Missingness introduces additional heteroskedasticity.

• MCV is impossible to ensure in an informative way without restricting both

the dependence between M and X , and between M and Y .

• CP-MDA-Nested? (Missing Data Augmentation) is the first method to output

predictive intervals with missing values.

• CP-MDA-Nested? attains conditional coverage with respect to the missing

pattern (in MCAR and Y⊥⊥M |X setting).

• CP-MDA-Nested? is empirically robust to non-MCAR scenarii.
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Extensions

• Consistency of universal quantile learner when chained with almost any
imputation function (Z., Dieuleveut, Josse and Romano, 2023)

• (Non-)Parametric modelizations of the missing covariates’ influence on
predictive uncertainty (Z., Josse, Romano and Dieuleveut, 2024)

• Other theoretical guarantees on CP-MDA-Nested?

(Z., Dieuleveut, Josse and Romano, 2023; Z., Josse, Romano and Dieuleveut, 2024)

• Critical care medical data experiments (Z., Dieuleveut, Josse and Romano, 2023)

A natural open direction: is it possible to achieve MCV under MAR and

Y⊥⊥M |X assumptions?
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