Predictive uncertainty quantification with missing covariates

Margaux Zaffran June 13, 2024 DATA Seminar

Who am I?

- 3rd (last) year statistics PhD Student, @ INRIA & École Polytechnique
- Funded by Électricité de France
- My advisors:

Aymeric Dieuleveut École Polytechnique

Olivier Féron EDF R&D FiME

Yannig Goude EDF R&D LMO

nce the lat

Julie Josse PreMeDICaL INRIA

- Research interests:
 - $\circ~$ Distribution-free uncertainty quantification
 - $\circ~$ Time series data
 - $\circ~$ Missing values
 - Real life applications (energy, environmental, medical and societal domains)

Predictive Uncertainty Quantification with Missing Covariates

Yaniv Romano Technion - Israel Institute of Technology Julie Josse PreMeDICaL INRIA Aymeric Dieuleveut École Polytechnique

Conformal Prediction with Missing Values, ICML 2023

Predictive Uncertainty Quantification with Missing Covariates, submitted in 2024

- Standard mean-regression case
- Conformalized Quantile Regression (CQR)
- Generalization of SCP: going beyond regression

Predictive Uncertainty Quantification with Missing Covariates

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^{n}$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha, \tag{1}$$

and C_{α} should be as small as possible, in order to be informative. For example: $\alpha = 0.1$ and obtain a 90% coverage interval

- Construction of the predictive intervals should be
 - agnostic to the model
 - agnostic to the data distribution
 - valid in finite samples

(Way too short) Introduction to (Split) Conformal Prediction Standard mean-regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Predictive Uncertainty Quantification with Missing Covariates

Split Conformal Prediction (SCP)^{1,2,3}: toy example

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

- Predict with $\hat{\mu}$
- Get the |residuals|, a.k.a. conformity scores
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

Standard mean-regression SCP: implementation details

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get $\hat{\mu}$ by training the algorithm \mathcal{A} on the proper training set
- 3. On the calibration set, get prediction values with $\hat{\mu}$
- 4. Obtain a set of #Cal + 1 conformity scores :

$$\mathcal{S} = \{S_i = |\hat{\mu}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$$

(+ worst-case scenario)

Compute the 1 - α empirical quantile of these scores, noted q_{1-α} (S)
 For a new point X_{n+1}, return

$$\widehat{C}_{\alpha}(X_{n+1}) = [\widehat{\mu}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mu}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$$

Exchangeability

 $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ are exchangeable if for any permutation σ of $\llbracket 1, n \rrbracket$ we have: $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}) \stackrel{d}{=} (X^{(\sigma(1))}, Y^{(\sigma(1))}), \dots, (X^{(\sigma(n))}, Y^{(\sigma(n))}).$

Examples of exchangeable sequences

- i.i.d. samples
- The components of $\mathcal{N}\left(\begin{pmatrix}m\\ \vdots\\ \vdots\\ m\end{pmatrix}, \begin{pmatrix}\sigma^2 & & & \gamma^2\\ & \ddots & \gamma^2\\ & \gamma^2 & \ddots\\ & & & & \sigma^2\end{pmatrix}\right)$

Standard mean-regression SCP: theoretical guarantees

Standard mean-regression SCP marginal validity (Vovk et al., 2005; Lei et al., 2018)

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.)^{*a*}. Standard mean-regression SCP applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha$$

Additionally, if the scores $\left\{S^{(k)}
ight\}_{k\in\mathrm{Cal}}\cup\{S^{(n+1)}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

^aOnly the calibration and test data need to be exchangeable.

X Marginal coverage: $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right\} \ge 1 - \alpha$

Predict with \$\httyce{\mu}\$
Build \$\hat{C}_{\alpha}(x)\$: [\$\httyce{\mu}(x) \pm q_{1-\alpha}(\mathcal{S})\$]

Standard mean-regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Predictive Uncertainty Quantification with Missing Covariates

Conformalized Quantile Regression (CQR)⁴

⁴Romano et al. (2019), Conformalized Quantile Regression, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

⁴Romano et al. (2019), *Conformalized Quantile Regression*, NeurIPS

CQR marginal validity (Romano et al., 2019)

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.)^a. CQR applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\left\{S^{(k)}
ight\}_{k\in\mathrm{Cal}}\cup\{S^{(n+1)}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

^aOnly the calibration and test data need to be exchangeable.

× Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$$

- Standard mean-regression case
- Conformalized Quantile Regression (CQR)
- Generalization of SCP: going beyond regression
- Predictive Uncertainty Quantification with Missing Covariates
- Final words

SCP is defined by the conformity score function

- 1. Randomly split the training data into a proper training set (size #Tr) and a calibration set (size #Cal)
- 2. Get \hat{A} by training the algorithm A on the proper training set
- 3. On the calibration set, obtain #Cal + 1 conformity scores

 $\mathcal{S} = \{S_i = \mathbf{s}(\hat{A}(X_i), Y_i), i \in \operatorname{Cal}\} \cup \{+\infty\}$

Ex 1: $\mathbf{s}(\hat{A}(X_i), Y_i) := |\hat{\mu}(X_i) - Y_i|$ in regression with standard scores Ex 2: $\mathbf{s}(\hat{A}(X_i), Y_i) := \max\left(\widehat{\mathsf{QR}}_{\mathsf{lower}}(X_i) - Y_i, Y_i - \widehat{\mathsf{QR}}_{\mathsf{upper}}(X_i)\right)$ in CQR

- 4. Compute the 1α empirical quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \{y ext{ such that } extbf{s}(\widehat{\mathcal{A}}(X_{n+1}),y) \leq q_{1-lpha}\left(\mathcal{S}
ight)\}$$

 \hookrightarrow The definition of the conformity scores is crucial, as they incorporate almost all the information: data + underlying model

SCP marginal validity (Vovk et al., 2005)

Suppose $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are exchangeable (or i.i.d.)^a. SCP applied on $(X^{(k)}, Y^{(k)})_{k=1}^{n}$ outputs $\widehat{C}_{\alpha}(\cdot)$ such that:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\}\geq 1-\alpha.$$

Additionally, if the scores $\left\{S^{(k)}
ight\}_{k\in\mathrm{Cal}}\cup\{S^{(n+1)}\}$ are a.s. distinct:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \leq 1 - \alpha + \frac{1}{\#\mathrm{Cal} + 1}.$$

^aOnly the calibration and test data need to be exchangeable.

× Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha$$

Split Conformal Prediction is simple to compute and works:

- ✓ any regression (and classification) algorithm (neural nets, random forest...);
- ✓ distribution-free as long as the data is exchangeable;
- ✓ finite sample.

X Note that the theoretical guarantee is **marginal** over the joint distribution of (X, Y), and **not conditional**. In particular, features conditional validity is not ensured: there is no guarantee that for any $x \in \mathcal{X}$

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) \mid X^{(n+1)} = x\right\} \ge 1 - \alpha.$$

Informative conditional coverage as such is impossible

• Impossibility results

 \hookrightarrow Vovk (2012); Lei and Wasserman (2014); Barber et al. (2021)

Without distribution assumption, in finite sample, a perfectly features conditionally valid \widehat{C}_{α} is such that $\mathbb{P}\left\{\max\left(\widehat{C}_{\alpha}(x)\right) = \infty\right\} \ge 1 - \alpha$ for any non-atomic x.

• Approximate conditional coverage

 \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{C}_{\alpha} | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.

Predictive Uncertainty Quantification with Missing Covariates

Supervised learning setting with missing values

Goals and challenges for predictive uncertainty quantification

Is MCV a too lofty goal?!

Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

Predictive Uncertainty Quantification with Missing Covariates Supervised learning setting with missing values Goals and challenges for predictive uncertainty quantification Is MCV a too lofty goal?! Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

Missing values are ubiquitous and challenging

YX1X2X3
$$(M_1 \ M_2 \ M_3)$$
22563001968NA0019536007NA9NA10134900020NANA11198NA401

 $\hookrightarrow 2^d$ potential masks.

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

- $\hookrightarrow M$ can depend on X or Y (depending on the missing mechanism⁵).
- \Rightarrow Statistical and computational challenges.

⁵Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\left\{ \underbrace{\phi(X_{obs(M^{(k)})}^{(k)}, M^{(k)})}_{U^{(k)} = \text{imputed } X^{(k)}}, Y^{(k)} \right\}_{k=1}^{n}$

 \hookrightarrow we consider an impute-then-regress pipeline in this work.

Predictive Uncertainty Quantification with Missing Covariates Supervised learning setting with missing values Goals and challenges for predictive uncertainty quantification Is MCV a too lofty goal?! Achieving MCV under $M \perp X$ and $Y \perp M | X$

Goals of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha.$$
 (MV)

For example: $\alpha = 0.1$ and obtain a 90% coverage interval.

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} 1 - \alpha. \tag{MCV}$$

Exchangeability after imputation (Z., Dieuleveut, Josse and Romano, 2023)

Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$ are i.i.d. (or exchangeable). Then, for any missing mechanism, for almost all imputation function^a ϕ : $\left(\phi\left(X_{obs(M^{(k)})}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

^aEven if the imputation is not accurate, the guarantee will hold.

 \Rightarrow CQR, and Conformal Prediction, applied on an imputed data set still enjoys marginal guarantees 6 :

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)\right\}\geq 1-\alpha.$$

⁶The upper bound also holds under continuously distributed scores.

CQR is marginally valid on imputed data sets

$$Y=eta^{ op}X+arepsilon$$
 , $eta=(1,2,-1)^{ op}$, X and $arepsilon$ Gaussian.

- ✓ Marginal (i.e. average) coverage (MV) is indeed recovered!
- X Mask-conditional-validity (MCV) is not attained
 - $\,\hookrightarrow\,$ Missing values induce heteroskedasticity

(supported by theory under (non-)parametric assumptions)

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed \succ among all the data points, regardless of their mask!

Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set by mask is infeasible (lack of data)!

Predictive Uncertainty Quantification with Missing Covariates

Supervised learning setting with missing values

Goals and challenges for predictive uncertainty quantification

Is MCV a too lofty goal?!

Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

Fully distribution-free MCV is necessarily uninformative

General MCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)7

If any \widehat{C}_{α} is distribution-free MCV then **for any distribution** P, for any mask m such that $P_M(m) > 0$, it holds:

$$\mathbb{P}_{P^{\otimes (n+1)}}\left(\max\left(\widehat{C}_{\alpha}\left(X_{n+1},m\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{m,n}\geq 1-\alpha-P_{M}(m)\sqrt{n+1}.$$

Irreducible term: consider \widehat{C}_{α} outputting \mathcal{Y} with probability $1 - \alpha$ and \emptyset otherwise. $\Delta_{m,n}$ term: smaller than $P_{\mathcal{M}}(m)\sqrt{n+1}$

- \hookrightarrow gets negligible (making the lower bound nearly 1α) for low probability masks compared to *n*;
- \hookrightarrow gets large (making the lower bound trivial because negative) for high probability masks compared to *n*.

⁷An analogous statement is also available for the classification framework.

Restricting the link between M and (X or Y) does not allow informative MCV

 $M \perp X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $M \perp X$, then for any distribution P such that $M \perp X$, for any mask m such that $P_M(m) > 0$, it holds:

$$\mathbb{P}_{P^{\otimes (n+1)}}\left(\max\left(\widehat{C}_{\alpha}\left(X_{n+1},m\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{m,n}\geq 1-\alpha-P_{M}(m)\sqrt{n+1}.$$

 $Y \perp M \mid X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $Y \perp M \mid X$, then for any distribution P such that $Y \perp M \mid X$, for any mask m such that $\frac{1}{\sqrt{2}} \ge P_M(m) > 0$, it holds:

$$\mathbb{P}_{P^{\otimes (n+1)}}\left(\max\left(\widehat{C}_{\alpha}\left(X_{n+1},m\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{m,n}\geq 1-\alpha-2P_{M}(m)\sqrt{n+1}.$$

 \Rightarrow need to restrict both the link between M and X, as well as between M and Y.

Analogous statements are also available for the classification framework.

Predictive Uncertainty Quantification with Missing Covariates

Supervised learning setting with missing values

Goals and challenges for predictive uncertainty quantification

Is MCV a too lofty goal?!

Achieving MCV under $M \perp X$ and $Y \perp M \mid X$

CP-MDA-Nested* (Missing Data Augmentation)

Idea: for each test point, modify the calibration points to mimic the test mask

22 / 27

Mask-conditional-validity of CP-MDA-Nested* (Z., Josse, Romano and Dieuleveut, 2024)

Under the assumptions that:

- *M* ⊥ *X*,
- $Y \perp M \mid X$,

•
$$(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n+1}$$
 are i.i.d.,

• the subsampling scheme is independent of $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$,

then, for almost all imputation function, CP-MDA-Nested* reaches (MCV) at the level $1 - 2\alpha$, that is:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},m\right)|M^{(n+1)}\right\} \stackrel{a.s.}{\geq} 1-2\alpha.$$

40% of missing values

- Under various MAR and MNAR mechanisms, CP-MDA-Nested* maintains empirical MCV;
- When Y *⊥*M |X and the imputation is not accurate enough, CP-MDA-Nested^{*} fails to empirically ensure MCV, with a loss of coverage that is more critical when subsampling.

Predictive Uncertainty Quantification with Missing Covariates

- CP marginal guarantees hold on the imputed data set.
- CQR (and more generally CP) fails to attain coverage conditional on the missing pattern, i.e. MCV.
- Missingness introduces additional heteroskedasticity.
- MCV is impossible to ensure in an informative way without restricting both the dependence between *M* and *X*, and between *M* and *Y*.
- CP-MDA-Nested* (Missing Data Augmentation) is the first method to output predictive intervals with missing values.
- CP-MDA-Nested* attains conditional coverage with respect to the missing pattern (in MCAR and $Y \perp M \mid X$ setting).
- CP-MDA-Nested* is empirically robust to non-MCAR scenarii.

- Consistency of universal quantile learner when chained with almost any imputation function (Z., Dieuleveut, Josse and Romano, 2023)
- (Non-)Parametric modelizations of the missing covariates' influence on predictive uncertainty (Z., Josse, Romano and Dieuleveut, 2024)
- Other theoretical guarantees on CP-MDA-Nested*

(Z., Dieuleveut, Josse and Romano, 2023; Z., Josse, Romano and Dieuleveut, 2024)

• Critical care medical data experiments (Z., Dieuleveut, Josse and Romano, 2023)

A natural open direction: is it possible to achieve MCV under MAR and $Y \perp M \mid X$ assumptions?

- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2).
- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).

- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.
- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In International Conference on Artificial Intelligence and Statistics. PMLR.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1).
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.

References iii

- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63(3).
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning. PMLR.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.