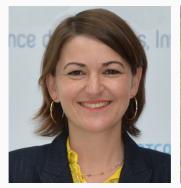
Predictive uncertainty quantification with missing covariates

On the hardness of distribution-free group conditional coverage

Margaux Zaffran

December 16, 2024

International Conference on Statistics and Data Science



Julie Josse PreMeDICaL Inria

Yaniv RomanoTechnion – Israel Institute of
Technology

Aymeric Dieuleveut

CMAP

École Polytechnique

→ Aymeric will present methodological results tomorrow at 9am in room Fregate!

Distribution-free predictive uncertainty quantification

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^n$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha, \qquad \text{(validity)}$$

and \mathcal{C}_{α} should be as small as possible, in order to be informative.

- ► Construction of the predictive intervals should be
 - o agnostic to the learning model¹
 - o agnostic to the data distribution
- ► Validity should be ensured
 - o in finite samples
 - o for all data distribution and underlying learnt model

¹The underlying model can be any probabilistic model tailored for the application task at hand.

Distribution-free marginal validity is achievable

Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al., 2018) builds an estimated predictive set \widehat{C}_{α} based on n data points.

Conformal prediction achieves marginal validity (Vovk et al., 2005)

 \widehat{C}_{α} outputted by conformal prediction is such that for any distribution $\mathcal D$ on $(\mathcal X,\mathcal Y)$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right) \geq 1 - \alpha.$$

 $m{X}$ Marginal coverage: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) | \underline{X^{(n+1)}} = x\right) \geq 1 - \alpha$.

Definition of distribution-free features conditional validity

 $\widehat{C}_{\alpha} =$ estimated predictive set based on n data points.

Distribution-free X-conditional validity

 \widehat{C}_{α} achieves distribution-free X-conditional validity if for any distribution \mathcal{D} , it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)}\right) \overset{\textit{a.s.}}{\geq} 1 - \alpha.$$

Limits of distribution-free conditional predictive uncertainty quantification

Informative conditional coverage as such is impossible

Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)²

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_{X} -almost all \mathcal{D}_{X} -non-atoms $\mathbf{x} \in \mathcal{X}$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n)}}\left\{\mathsf{mes}\left(\widehat{\mathcal{C}}_{lpha}(x)
ight)=\infty
ight\}\geq 1-lpha.$$

- Asymptotic (with the sample size) conditional coverage
 - \hookrightarrow Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)
- Approximate conditional coverage
 - \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)

Target
$$\mathbb{P}(Y^{(n+1)} \in \widehat{C}_{\alpha}(X^{(n+1)}) | X^{(n+1)} \in \mathcal{R}(x)) \ge 1 - \alpha$$

 $^{^2\}mathrm{An}$ analogous statement is also available for the classification framework. Non exhaustive references.

Definition of distribution-free group conditional validity ($\mathcal{G}CV$)

 $\widehat{C}_{\alpha} =$ estimated predictive set based on n data points.

 ${\mathcal G}$ a set of "groups" (i.e., define G a random variable taking its values in ${\mathcal G}$).

Distribution-free \mathcal{G} -conditional validity ($\mathcal{G}CV$)

 \widehat{C}_{α} achieves distribution-free \mathcal{G} -conditional validity if for any distribution \mathcal{D} on $(\mathcal{X},\mathcal{G},\mathcal{Y})$, it holds that:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, G^{(n+1)}\right) | G^{(n+1)}\right) \overset{\textit{a.s.}}{\geq} 1 - \alpha.$$

Hardness of distribution-free group conditional coverage

General GCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)³

If any \widehat{C}_{α} is distribution-free \mathcal{G} -conditionally valid then **for any distribution** \mathcal{D} , for any group $g \in \mathcal{G}$ such that $\mathcal{D}_{\mathcal{G}}(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n}$$
$$\geq 1 - \alpha - \mathcal{D}_{G}(g)\sqrt{n+1}.$$

Irreducible term: consider $\widehat{\mathcal{C}}_{\alpha}$ outputting \mathcal{Y} with probability $1-\alpha$ and \emptyset otherwise.

 $\Delta_{g,n}$ term: smaller than $\mathcal{D}_G(g)\sqrt{n+1}$

 \hookrightarrow gets negligible (making the lower bound nearly $1-\alpha$) **only** for low probability groups compared to n.

³An analogous statement is also available for the classification framework.

Restricting the link between G and (X or Y) does not allow informative $\mathcal{G}CV$

 $G \perp X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is \mathcal{G} CV under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group g such that $\mathcal{D}_{G}(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}.$$

 $Y \perp \!\!\! \perp G \mid X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $Y \perp \!\!\! \perp G \mid X$, then for any distribution \mathcal{D} such that $Y \perp \!\!\! \perp G \mid X$, for any mask m such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_G(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - 2\mathcal{D}_{G}(g)\sqrt{n+1}.$$

 \Rightarrow need to restrict both the link between G and X, as well as between G and Y.

Analogous statements are also available for the classification framework.

Application to learning with missing covariates

Missing values are ubiquitous and challenging

Y	X_1	X_2	X_3
22	5	6	3
19	6	8	NA
19	5	3	6
7	NA	9	NA
13	4	9	0
20	NA	NA	1
9	8	NA	4

Mask $M =$					
M_2	M_3)				
0	0				
0	1				
0	0				
0	1				
0	0				
1	0				
1	0				
	M ₂ 0 0 0 0 0 1				

 \Rightarrow Statistical and computational challenges.

 $[\]hookrightarrow 2^d$ potential masks.

 $[\]hookrightarrow M$ can depend on X or Y (depending on the missing mechanism⁴).

 $^{^4}$ Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika

Supervised learning with missing values: impute-then-predict

Impute-then-predict procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

$x^{(1)}$	-1	-10	6	0		$u^{(1)}$	-1	-10	6	0
$x^{(2)}$	4	NA	-2	2	ϕ	$u^{(2)}$	4	-4.5	-2	2
$x^{(3)}$	5	1	2	NA		$u^{(3)}$	5	1	2	1
$x^{(4)}$	0	NA	NA	1		$u^{(4)}$	0	-4.5	3	1

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data:
$$\left\{\underbrace{\phi\left(X_{\text{obs}(M^{(k)})}^{(k)},M^{(k)}\right)}_{U^{(k)}=\text{imputed }X^{(k)}},Y^{(k)}\right\}_{k=1}^{n}.$$

 \hookrightarrow we consider an impute-then-predict pipeline in this work.

Goals of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{\text{a.s.}}{\geq} 1 - \alpha. \tag{MCV}$$

Validities of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} \frac{1-\alpha}{\alpha}. \tag{MCV}$$

	Exisiting approaches	New approach (Z., Josse, Romano and Dieuleveut, 2024)
(MV)	(Z., Dieuleveut, Josse, and Romano, 2023)	✓
(MCV)	X	✓ under $M \perp (X, Y)$

Thanks for listening and feel free to reach out to us!

Tomorrow at 9am in room Fregate: methodological results by Aymeric!

References i

- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.

- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 76(1).
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.

Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.

Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63(3).

Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.

Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In *Asian Conference on Machine Learning*. PMLR.

References iv

- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2023). Conformal prediction with missing values. In *Proceedings of the 40th International Conference on Machine Learning*. PMLR.
- Zaffran, M., Josse, J., Romano, Y., and Dieuleveut, A. (2024). Predictive uncertainty quantification with missing covariates. *arXiv:2405.15641*.