Predictive uncertainty quantification with missing
covariates

On the hardness of distribution-free group conditional coverage

Margaux Zaffran

December 16, 2024
International Conference on Statistics and Data Science

UC Berkeley -

Pou
W V2! 1P PARIS



Julie Josse Yaniv Romano Aymeric Dieuleveut
PreMeDICal Technion — Israel Institute of CMAP

Inria Technology Ecole Polytechnique

— Aymeric will present methodological results tomorrow at 9am in room Fregatel



Distribution-free predictive uncertainty quantification



Quantifying predictive uncertainty

e (X,Y) € RY x R random variables
e 1 training samples (X(k)7 Y(k))z,l

e Goal: predict an unseen point Y{("*1) at X("+1) with confidence

e How? Given a miscoverage level o € [0, 1], build a predictive set C,, such that:
P {Y("“) e, (X("H))} >1-—aq (validity)

and C, should be as small as possible, in order to be informative.
» Construction of the predictive intervals should be
o agnostic to the learning model!
o agnostic to the data distribution
» Validity should be ensured
o in finite samples

o for all data distribution and underlying learnt model

! The underlying model can be any probabilistic model tailored for the application task at hand.
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Distribution-free marginal validity is achievable

Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al.,
2018) builds an estimated predictive set C, based on n data points.

'_[ Conformal prediction achieves marginal validity (Vovk et al., 2005) L

al outputted by conformal prediction is such that for any distribution D on
(X,)), it holds:

P pooi (Y("+1) eC, (X("+1))) >1—a.

X Marginal coverage: Pprgns1) (Y(”H) € C, (X(”H))\X(”H):/x) >1—oa.
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Definition of distribution-free features conditional validity

C, = estimated predictive set based on n data points.

__| Distribution-free X-conditional validity | ‘

6a achieves distribution-free X-conditional validity if for any distribution D,

it holds:

a.s.

P oy (Y("+1) e C, (x<”+1)) |x("+1)) S 1-a
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Limits of distribution-free conditional predictive
uncertainty quantification




Informative conditional coverage as such is impossible

_[ Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)? I

If 6a is distribution-free X-conditionally valid, then, for any D, for Dx—almost
all Dx—non-atoms x € X, it holds:

P pe(n) {mes <(.A'a(x)) = oo} >1-a.

e Asymptotic (with the sample size) conditional coverage
— Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.
(2021); Sesia and Romano (2021); Izbicki et al. (2022)

e Approximate conditional coverage
— Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)
Target P(Y("1) € C, (X("tD) | X(+) € R(x)) > 1 - a

2An analogous statement is also available for the classification framework.
Non exhaustive references.
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Definition of distribution-free group conditional validity (GCV)

C, = estimated predictive set based on n data points.

G a set of “groups” (i.e., define G a random variable taking its values in G).

’_[ Distribution-free G-conditional validity (GCV) |

Ea achieves distribution-free G-conditional validity if for any distribution D
on (X,G,)), it holds that:

P oo (Y(n+1) eC, <X(n+1) G(n+1)> G n+1)) B o
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Hardness of distribution-free group conditional coverage

General GCV hardness result (z., Josse, Romano and Dieuleveut, 2024)3 I

If any 6a is distribution-free G-conditionally valid then for any distribution
D, for any group g € G such that Dg(g) > 0, it holds:

P pe(n1) (mes (CA"a (X(”+1),g>) — oo) >1—a—A0gh,
>1—a-— ’Dc(g)\/ﬁ.

J

Irreducible term: consider 6a outputting ) with probability 1 — « and ) otherwise.

Ag , term: smaller than Dg(g)vn+1

— gets negligible (making the lower bound nearly 1 — «) only for low probability
groups compared to n.

3An analogous statement is also available for the classification framework.
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Restricting the link between G and (X or Y) does not allow informative GCV

G 1L X hardness result (z., Josse, Romano and Dieuleveut, 2024) ]
J

If any al is GCV under G I X, then for any distribution D such that G I X,
for any group g such that Dg(g) > 0, it holds:

Ppen (mes (6a (X("+1),g)> = oo) >1-a—ADgp > 1-a—Dg(g)Vn+1.

J

YIG |X hardness result (z., Josse, Romano and Dieuleveut, 2024) I

If any (.A'a is MCV under ¥ LG | X, then for any distribution D such that

Y LG | X, for any mask m such that \/lﬁ > Dg(g) > 0, it holds:

P ooy (mes (fa (X("+1),g)> - oo) >1-a—Agn > 1-a—2Dg(g)Vn+ 1

. 7

= need to restrict both the link between G and X, as well as between G and Y.

Analogous statements are also available for the classification framework.
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Application to learning with missing covariates




Missing values are ubiquitous and challenging

Mask M =
Y| X X X (My M, M)
22 | 5 6 3 0 0 0
19 | 6 8 NA 0 0 1
Data: (X(k)’ MKk y(k))::1 19| 5 3 6 0 0 0
7 | NA 9 NA 1 0 1
13| 4 9 0 0 0
20 [ NA NA 1 1 1 0
9 8 NA 4 0 1 0

< 29 potential masks.
<+ M can depend on X or Y (depending on the missing mechanism?).
= Statistical and computational challenges.

*Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika
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Supervised learning with missing values: impute-then-predict

Impute-then-predict procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ¢.

z®] -1 |-10] 6 | o0 w1 |10 6 | 0
2@ 4 Jua | 2| 2 & u@| 4 |as| 2|2
2@ s | 1| 2 |ma u® s 12 |
@) o wa fwa | 1 u® 0 |as| 3 |1

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed

n

data: “(Xé:s)(M(k))’ M(k)>, y (k)

UK =imputed X(k k=1

— we consider an impute-then-predict pipeline in this work.
9/11



Goals of predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1 — «, i.e. build the smallest C,, such that:

| 1. Marginal Validity (MV) |

P {Y("+1> ec, (X("+1), l\/l(”“)) } >1-a. (MV)

| 2. Mask-Conditional-Validity (MCV) |

P{y("D) e ¢, (XD, MirtD) a2} Tioa (MCV)

octo OHt... But THE SOPTWARE
H Docrore, Here Are THe REsULTS HAD AL pieoMo

OF M MEDICAL EXAMS .
- e ° MEDICAL FORM...

KD e o The PROBABLIT Mt Fe
CUTENEHOU . LESS THAN THIS

Illustrations @theoremlinger
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Validities of predictive uncertainty quantification with missing values

Goal: predict Y (n+1) with confidence 1 — «, i.e. build the smallest C,, such that:
| 1. Marginal Validity (MV) |

P {Y("+1> ec, (X("+1), /\//("H)) } >1-a. (MV)

\. J

| 2. Mask-Conditional-Validity (MCV) |

P{y("D) e c, (XD, mirtD) [plosD) | Tioa (MCV)

New approach

Exisiting approaches
(Z., Josse, Romano and Dieuleveut, 2024)

v
(MV) . v
(Z., Dieuleveut, Josse, and Romano, 2023)
(MCV) X v/ under M L (X,Y)
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Thanks for listening and feel free to reach out to us!

. methodological results by Aymeric!


https://arxiv.org/pdf/2405.15641
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