Predictive uncertainty quantification with missing covariates On the hardness of distribution-free group conditional coverage Margaux Zaffran December 16, 2024 International Conference on Statistics and Data Science Julie Josse PreMeDICaL Inria **Yaniv Romano**Technion – Israel Institute of Technology Aymeric Dieuleveut CMAP École Polytechnique → Aymeric will present methodological results tomorrow at 9am in room Fregate! Distribution-free predictive uncertainty quantification # Quantifying predictive uncertainty - $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables - *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^n$ - Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence - How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that: $$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha, \qquad \text{(validity)}$$ and \mathcal{C}_{α} should be as small as possible, in order to be informative. - ► Construction of the predictive intervals should be - o agnostic to the learning model¹ - o agnostic to the data distribution - ► Validity should be ensured - o in finite samples - o for all data distribution and underlying learnt model ¹The underlying model can be any probabilistic model tailored for the application task at hand. ## Distribution-free marginal validity is achievable Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al., 2018) builds an estimated predictive set \widehat{C}_{α} based on n data points. ## Conformal prediction achieves marginal validity (Vovk et al., 2005) \widehat{C}_{α} outputted by conformal prediction is such that for any distribution $\mathcal D$ on $(\mathcal X,\mathcal Y)$, it holds: $$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right) \geq 1 - \alpha.$$ $m{X}$ Marginal coverage: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) | \underline{X^{(n+1)}} = x\right) \geq 1 - \alpha$. # Definition of distribution-free features conditional validity $\widehat{C}_{\alpha} =$ estimated predictive set based on n data points. #### Distribution-free X-conditional validity \widehat{C}_{α} achieves distribution-free X-conditional validity if for any distribution \mathcal{D} , it holds: $$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)}\right) \overset{\textit{a.s.}}{\geq} 1 - \alpha.$$ Limits of distribution-free conditional predictive uncertainty quantification ## Informative conditional coverage as such is impossible # Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)² If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_{X} -almost all \mathcal{D}_{X} -non-atoms $\mathbf{x} \in \mathcal{X}$, it holds: $$\mathbb{P}_{\mathcal{D}^{\otimes (n)}}\left\{\mathsf{mes}\left(\widehat{\mathcal{C}}_{lpha}(x) ight)=\infty ight\}\geq 1-lpha.$$ - Asymptotic (with the sample size) conditional coverage - \hookrightarrow Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022) - Approximate conditional coverage - \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $$\mathbb{P}(Y^{(n+1)} \in \widehat{C}_{\alpha}(X^{(n+1)}) | X^{(n+1)} \in \mathcal{R}(x)) \ge 1 - \alpha$$ $^{^2\}mathrm{An}$ analogous statement is also available for the classification framework. Non exhaustive references. # Definition of distribution-free group conditional validity ($\mathcal{G}CV$) $\widehat{C}_{\alpha} =$ estimated predictive set based on n data points. ${\mathcal G}$ a set of "groups" (i.e., define G a random variable taking its values in ${\mathcal G}$). # Distribution-free \mathcal{G} -conditional validity ($\mathcal{G}CV$) \widehat{C}_{α} achieves distribution-free \mathcal{G} -conditional validity if for any distribution \mathcal{D} on $(\mathcal{X},\mathcal{G},\mathcal{Y})$, it holds that: $$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, G^{(n+1)}\right) | G^{(n+1)}\right) \overset{\textit{a.s.}}{\geq} 1 - \alpha.$$ ## Hardness of distribution-free group conditional coverage #### General GCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)³ If any \widehat{C}_{α} is distribution-free \mathcal{G} -conditionally valid then **for any distribution** \mathcal{D} , for any group $g \in \mathcal{G}$ such that $\mathcal{D}_{\mathcal{G}}(g) > 0$, it holds: $$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n}$$ $$\geq 1 - \alpha - \mathcal{D}_{G}(g)\sqrt{n+1}.$$ Irreducible term: consider $\widehat{\mathcal{C}}_{\alpha}$ outputting \mathcal{Y} with probability $1-\alpha$ and \emptyset otherwise. $\Delta_{g,n}$ term: smaller than $\mathcal{D}_G(g)\sqrt{n+1}$ \hookrightarrow gets negligible (making the lower bound nearly $1-\alpha$) **only** for low probability groups compared to n. ³An analogous statement is also available for the classification framework. # Restricting the link between G and (X or Y) does not allow informative $\mathcal{G}CV$ $G \perp X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024) If any \widehat{C}_{α} is \mathcal{G} CV under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group g such that $\mathcal{D}_{G}(g) > 0$, it holds: $$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}.$$ $Y \perp \!\!\! \perp G \mid X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024) If any \widehat{C}_{α} is MCV under $Y \perp \!\!\! \perp G \mid X$, then for any distribution \mathcal{D} such that $Y \perp \!\!\! \perp G \mid X$, for any mask m such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_G(g) > 0$, it holds: $$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - 2\mathcal{D}_{G}(g)\sqrt{n+1}.$$ \Rightarrow need to restrict both the link between G and X, as well as between G and Y. Analogous statements are also available for the classification framework. Application to learning with missing covariates # Missing values are ubiquitous and challenging | Y | X_1 | X_2 | X_3 | |----|-------|-------|-------| | 22 | 5 | 6 | 3 | | 19 | 6 | 8 | NA | | 19 | 5 | 3 | 6 | | 7 | NA | 9 | NA | | 13 | 4 | 9 | 0 | | 20 | NA | NA | 1 | | 9 | 8 | NA | 4 | | Mask $M =$ | | | | | | |------------|----------------------------|--|--|--|--| | M_2 | M_3) | | | | | | 0 | 0 | | | | | | 0 | 1 | | | | | | 0 | 0 | | | | | | 0 | 1 | | | | | | 0 | 0 | | | | | | 1 | 0 | | | | | | 1 | 0 | | | | | | | M ₂ 0 0 0 0 0 1 | | | | | \Rightarrow Statistical and computational challenges. $[\]hookrightarrow 2^d$ potential masks. $[\]hookrightarrow M$ can depend on X or Y (depending on the missing mechanism⁴). $^{^4}$ Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika ## Supervised learning with missing values: impute-then-predict Impute-then-predict procedures are widely used. 1. Replace NA using an imputation function (e.g. the mean), noted ϕ . | $x^{(1)}$ | -1 | -10 | 6 | 0 | | $u^{(1)}$ | -1 | -10 | 6 | 0 | |-----------|----|-----|----|----|--------|-----------|----|------|----|---| | $x^{(2)}$ | 4 | NA | -2 | 2 | ϕ | $u^{(2)}$ | 4 | -4.5 | -2 | 2 | | $x^{(3)}$ | 5 | 1 | 2 | NA | | $u^{(3)}$ | 5 | 1 | 2 | 1 | | $x^{(4)}$ | 0 | NA | NA | 1 | | $u^{(4)}$ | 0 | -4.5 | 3 | 1 | 2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $$\left\{\underbrace{\phi\left(X_{\text{obs}(M^{(k)})}^{(k)},M^{(k)}\right)}_{U^{(k)}=\text{imputed }X^{(k)}},Y^{(k)}\right\}_{k=1}^{n}.$$ \hookrightarrow we consider an impute-then-predict pipeline in this work. # Goals of predictive uncertainty quantification with missing values **Goal:** predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that: #### 1. Marginal Validity (MV) $$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$ ### 2. Mask-Conditional-Validity (MCV) $$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{\text{a.s.}}{\geq} 1 - \alpha. \tag{MCV}$$ # Validities of predictive uncertainty quantification with missing values **Goal:** predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that: ## 1. Marginal Validity (MV) $$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$ ## 2. Mask-Conditional-Validity (MCV) $$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} \frac{1-\alpha}{\alpha}. \tag{MCV}$$ | | Exisiting approaches | New approach (Z., Josse, Romano and Dieuleveut, 2024) | |-------|---|---| | (MV) | (Z., Dieuleveut, Josse, and Romano, 2023) | ✓ | | (MCV) | X | ✓ under $M \perp (X, Y)$ | Thanks for listening and feel free to reach out to us! Tomorrow at 9am in room Fregate: methodological results by Aymeric! #### References i - Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48). - Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616. - Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1). - Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87). - Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*. - Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR. - Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*. - Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 76(1). - Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer. Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc. Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63(3). Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc. Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In *Asian Conference on Machine Learning*. PMLR. #### References iv - Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US. - Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2023). Conformal prediction with missing values. In *Proceedings of the 40th International Conference on Machine Learning*. PMLR. - Zaffran, M., Josse, J., Romano, Y., and Dieuleveut, A. (2024). Predictive uncertainty quantification with missing covariates. *arXiv:2405.15641*.