On the hardness of group-conditional distribution-free predictive inference

An application to prediction with missing covariates

Margaux Zaffran

February 6, 2025

Statistics Seminar, Laboratoire de Mathématiques d'Orsay

Julie Josse PreMeDICaL Inria

Yaniv RomanoTechnion – Israel Institute of
Technology

Aymeric Dieuleveut CMAP École Polytechnique

- o Predictive Uncertainty Quantification with Missing Covariates, 2024
- o Conformal Prediction with Missing Values, ICML 2023

Distribution-free predictive uncertainty quantification

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^n$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \ge 1 - \alpha, \qquad \text{(validity)}$$

and \mathcal{C}_{α} should be as small as possible, in order to be informative.

- Validity should be ensured
 - in finite samples
 - o for all data distribution and underlying learnt model

Distribution-free marginal validity is achievable

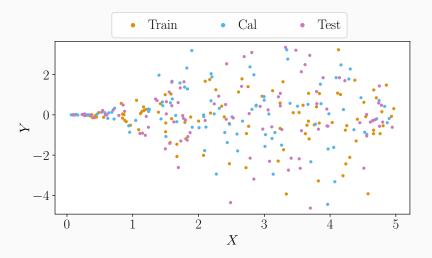
Conformal Prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al., 2018) builds an estimated predictive set \widehat{C}_{α} based on n data points.

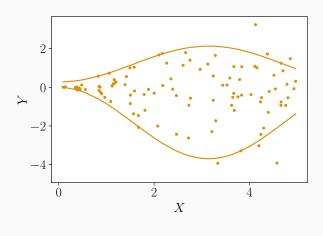
Conformal prediction achieves marginal validity (Vovk et al., 2005)

 \widehat{C}_{α} outputted by conformal prediction is such that for any distribution $\mathcal D$ on $(\mathcal X,\mathcal Y)$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right) \geq 1 - \alpha.$$

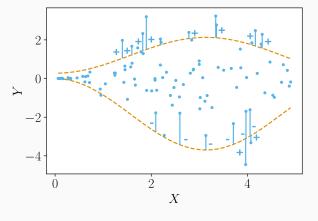
Conformalized Quantile Regression (CQR, Romano et al., 2019)





► Learn (or get) QR_{lower} and QR_{upper}

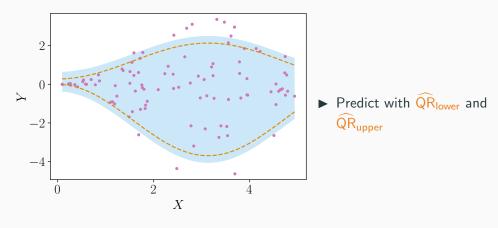
Conformalized Quantile Regression (CQR, Romano et al., 2019) calibration step



- ► Predict with \widehat{QR}_{lower} and \widehat{QR}_{upper}
 - ► Get the scores $S = \{S^{(k)}\}_{Col} \cup \{+\infty\}$
- ► Compute the (1α) empirical quantile of S, noted $q_{1-\alpha}(S)$

$$\hookrightarrow \ S^{(k)} := \max \left\{ \widehat{\mathsf{QR}}_{\mathsf{lower}} \left(X^{(k)} \right) - Y^{(k)}, Y^{(k)} - \widehat{\mathsf{QR}}_{\mathsf{upper}} \left(X^{(k)} \right) \right\}$$

Conformalized Quantile Regression (CQR, Romano et al., 2019) prediction step



$$\widehat{C}_{\alpha}(x) = \left[\widehat{\mathsf{QR}}_{\mathsf{lower}}(x) - q_{1-\alpha}\left(\mathcal{S}\right); \widehat{\mathsf{QR}}_{\mathsf{upper}}(x) + q_{1-\alpha}\left(\mathcal{S}\right)\right]$$

Distribution-free marginal validity is achievable: cont'd

Conformal Prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al., 2018) builds an estimated predictive set \widehat{C}_{α} based on n data points.

Conformal prediction achieves marginal validity (Vovk et al., 2005)

 \widehat{C}_{α} outputted by conformal prediction is such that for any distribution $\mathcal D$ on $(\mathcal X,\mathcal Y)$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right)\right) \geq 1 - \alpha.$$

 $\text{Marginal coverage: } \mathbb{P}_{\mathcal{D}^{\otimes (n+1)}} \left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha} \left(X^{(n+1)} \right) | \underline{X^{(n+1)}} = x \right) \geq 1 - \alpha.$

Definition of distribution-free features conditional validity

 $\widehat{C}_{\alpha} =$ estimated predictive set based on n data points.

Distribution-free X-conditional validity

 \widehat{C}_{α} achieves distribution-free X-conditional validity if for any distribution \mathcal{D} , it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)}\right) \overset{\textit{a.s.}}{\geq} 1 - \alpha.$$

Limits of distribution-free conditional predictive uncertainty quantification

Informative conditional coverage as such is impossible

Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)¹

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_{X} -almost all \mathcal{D}_{X} -non-atoms $\mathbf{x} \in \mathcal{X}$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n)}}\left\{\mathsf{mes}\left(\widehat{\mathcal{C}}_{lpha}(x)
ight)=\infty
ight\}\geq 1-lpha.$$

- \hookrightarrow distribution-free X-conditional hardness result apply beyond CP
- \hookrightarrow X-conditional estimators are overly large even on easy cases
- \hookrightarrow the lower bound is tight

Naive estimator

$$\mathcal{C}_{\alpha}(\cdot;\xi) \equiv \mathcal{Y}\mathbb{1} \; \{\xi \leq 1-\alpha\} + \emptyset \mathbb{1} \; \{\xi > \alpha\}, \; \text{where} \; \xi \sim \mathcal{U} \left([0,1]\right).$$

¹An analogous statement is also available for the classification framework.

Getting closer to X-conditional coverage

	X-conditionally valid	Non X-conditionally valid
"Non smooth" distribution	X-cov.: ✓ Length: ✓	X-cov.: X Length: not relevant
"Smooth" distribution	X-cov.: ✓ Length: X	X -cov.: $pprox$ Length: \checkmark

- Approximate conditional coverage
 - \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y^{(n+1)} \in \widehat{C}_{\alpha}(X^{(n+1)}) | X^{(n+1)} \in \mathcal{R}(x)) \ge 1 - \alpha$

Non exhaustive references.

Definition of distribution-free group conditional validity ($\mathcal{G}CV$)

 $\widehat{C}_{\alpha} =$ estimated predictive set based on n data points.

 ${\mathcal G}$ a set of "groups" (i.e., define G a random variable taking its values in ${\mathcal G}$).

Distribution-free \mathcal{G} -conditional validity ($\mathcal{G}CV$)

 \widehat{C}_{α} achieves distribution-free \mathcal{G} -conditional validity if for any distribution \mathcal{D} on $(\mathcal{X},\mathcal{G},\mathcal{Y})$, it holds that:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, G^{(n+1)}\right) | G^{(n+1)}\right) \overset{\textit{a.s.}}{\geq} 1 - \alpha.$$

Hardness of distribution-free group conditional coverage

General GCV hardness result (Z., Josse, Romano and Dieuleveut, 2024)²

If any \widehat{C}_{α} is distribution-free \mathcal{G} -conditionally valid then **for any distribution** \mathcal{D} , for any group $g \in \mathcal{G}$ such that $\mathcal{D}_{\mathcal{G}}(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n}$$
$$\geq 1 - \alpha - \mathcal{D}_{G}(g)\sqrt{n+1}.$$

Irreducible term: consider $\widehat{\mathcal{C}}_{\alpha}$ outputting \mathcal{Y} with probability $1-\alpha$ and \emptyset otherwise.

 $\Delta_{g,n}$ term: smaller than $\mathcal{D}_G(g)\sqrt{n+1}$

 \hookrightarrow gets negligible (making the lower bound nearly $1-\alpha$) **only** for low probability groups compared to n.

²An analogous statement is also available for the classification framework.

Sketch of proof

Let $\widehat{\mathcal{C}}_{\alpha}$ be distribution-free \mathcal{G} -conditionally valid.

- \triangleright Let \mathcal{D} a distribution on $(\mathcal{X}, \mathcal{G}, \mathcal{Y})$.
 - \hookrightarrow By assumption, \widehat{C}_{α} achieves $\mathcal{G}CV$ under \mathcal{D} .

Fix a group g such that $\mathcal{D}_G(g) > 0$.

- \triangleright Build $\mathcal Q$ another distribution such that:
 - \mathcal{Q} equals \mathcal{D} whenever $G \neq g$,
 - Q is arbitrarily spread on Y (e.g. $\mathcal{U}([-R,R])$ for R>0) when G=g.
 - \hookrightarrow By assumption, \widehat{C}_{α} achieves $\mathcal{G}\mathsf{CV}$ under $\mathcal Q$ also. Therefore, $\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right)$ is arbitrarily large under $\mathcal Q^{\otimes (n+1)}$ with probability at least $1-\alpha$.
- \Rightarrow By construction, $\mathcal D$ and $\mathcal Q$ are close in total variation.

They are separated of at most $\mathcal{D}_G(g)$.

 \hookrightarrow Thus, the total variation distance between $\mathcal{D}^{\otimes (n+1)}$ and $\mathcal{Q}^{\otimes (n+1)}$ is of at most $\Delta_{g,n} \leq \mathcal{D}_G(g)\sqrt{n+1}$.

Combining, we get the result under $\mathcal{D}^{\otimes (n+1)}$.

Restricting the link between G and (X or Y) does not allow informative $\mathcal{G}CV$

 $G \perp X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is \mathcal{G} CV under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group g such that $\mathcal{D}_{G}(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}.$$

 $Y \perp \!\!\! \perp G \mid X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $Y \perp \!\!\! \perp G \mid X$, then for any distribution \mathcal{D} such that $Y \perp \!\!\! \perp G \mid X$, for any mask m such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_G(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right)=\infty\right)\geq 1-\alpha-\Delta_{g,n}\geq 1-\alpha-2\mathcal{D}_{G}(g)\sqrt{n+1}.$$

 \Rightarrow need to restrict both the link between G and X, as well as between G and Y.

Analogous statements are also available for the classification framework.

Implications for $\mathcal{G}CV$ in practice

	\mathcal{G} -conditionally valid even when $G \not\perp (X, Y)$	\mathcal{G} -conditionally valid at most if $G \perp (X, Y)$
"Non smooth" distribution	G-cov.: ✓ Length: ✓	G-cov.: X Length: not relevant
"Smooth" distribution	G-cov.: ✓ Length: X	\mathcal{G} -cov.: $pprox$ Length: \checkmark

Application to learning with missing covariates

Missing values are ubiquitous and challenging

	22	5	6 8 3 9	3	
	19	6	8	NA	
Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$	19	5	3	6	
/ K=1	7	NA	9	NA	
	13	4	9	0	
	20	NA	NA	1	

Mask $M =$						
$(M_1$	M_2	$M_3)$				
0	0	0				
0	0	1				
0	0	0				
1	0	1				
0	0	0				
1	1	0				
0	1	0				

 \Rightarrow Statistical and computational challenges.

 $[\]hookrightarrow 2^d$ potential masks.

 $[\]hookrightarrow M$ can depend on X or Y (depending on the missing mechanism³).

³Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika

Supervised learning with missing values: impute-then-predict

Impute-then-predict procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

$x^{(1)}$	-1	-10	6	0		$u^{(1)}$	-1	-10	6	0
$x^{(2)}$	4	NA	-2	2	ϕ	$u^{(2)}$	4	-4.5	-2	2
$x^{(3)}$	5	1	2	NA		$u^{(3)}$	5	1	2	1
$x^{(4)}$	0	NA	NA	1		$u^{(4)}$	0	-4.5	3	1

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data:
$$\left\{\underbrace{\phi\left(X_{\text{obs}(M^{(k)})}^{(k)},M^{(k)}\right)}_{U^{(k)}=\text{imputed }X^{(k)}},Y^{(k)}\right\}_{k=1}^{n}.$$

 \hookrightarrow we consider an impute-then-predict pipeline in this work.

Goals of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\underline{\alpha}}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} \frac{1-\alpha}{\alpha}. \tag{MCV}$$

CP is marginally valid (MV) after imputation

Exchangeability after imputation (Z., Dieuleveut, Josse and Romano, 2023)

Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$ are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation function ϕ :

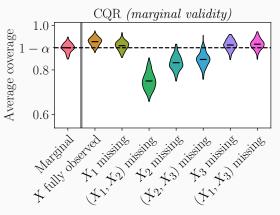
$$\left(\phi\left(X_{\text{obs}(M^{(k)})}^{(k)},M^{(k)}\right),Y^{(k)}\right)_{k=1}^{n}$$
 are exchangeable.

⇒ Conformal Prediction (CP), applied on an imputed data set still enjoys marginal guarantees:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \geq 1 - \alpha.$$

CP is marginally valid on imputed data sets

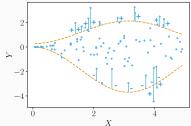
$$Y = \beta^T X + \varepsilon$$
, $\beta = (1, 2, -1)^T$, X and ε Gaussian.



- ✓ Marginal (i.e. average) coverage (MV) is indeed recovered!
- Mask-conditional-validity (MCV) is not attained

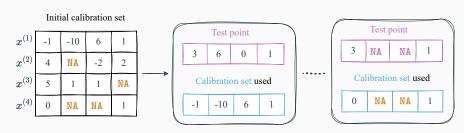
Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed among all the data points, regardless of their mask!



Warning: 2^d possible masks

⇒ Splitting the calibration set by mask is infeasible (lack of data)!



Mask-conditional-validity of CP-MDA-Nested* (Z., Josse, Romano and Dieuleveut, 2024)

Under the assumptions that:

- $M \perp (X, Y)$,
- $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are i.i.d.,

then, for almost all imputation function, CP-MDA-Nested* reaches (MCV) at the level $1-2\alpha$, that is:

$$\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \overset{\textit{a.s.}}{\geq} 1 - 2\alpha.$$

 \hookrightarrow Experiments beyond independence: under various MAR and MNAR mechanisms, and to some extent when $Y \not\perp \!\!\! \perp M | X$, CP-MDA-Nested* maintains empirical MCV.

Validities of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1-\alpha$, i.e. build the smallest \mathcal{C}_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\underline{\alpha}}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \overset{a.s.}{\geq} \frac{1-\alpha}{\alpha}. \tag{MCV}$$

	Exisiting approaches	CP-MDA-Nested* (Z., Josse, Romano and Dieuleveut, 2024)
(MV)	(Z., Dieuleveut, Josse, and Romano, 2023)	✓
(MCV)	×	✓ under $M \perp (X, Y)$

Take-home-messages

- Distribution-free group-conditional-coverage is hard to ensure theoretically on "rare" groups
- Weaker notions are empirically achievable
- These hardness results disappear if $G \perp (X, Y)$
- This strong assumption is relevant in the missing values context
- We propose an algorithm achieving MCV under $G \perp (X, Y)$, empirically robust when $G \not \perp (X, Y)$

Thanks for listening and feel free to reach out to us!

Questions?

References i

- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.

- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 76(1).
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.

- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63(3).
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In *Asian Conference on Machine Learning*. PMLR.

References iv

- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2023). Conformal prediction with missing values. In *Proceedings of the 40th International Conference on Machine Learning*. PMLR.
- Zaffran, M., Josse, J., Romano, Y., and Dieuleveut, A. (2024). Predictive uncertainty quantification with missing covariates. *arXiv:2405.15641*.