Predictive uncertainty quantification with missing covariates

On the hardness of distribution-free group conditional coverage

Margaux Zaffran January 8, 2025 Workshop UQ in ML: open questions and industrial issues

UC Berkeley

Julie Josse PreMeDICaL Inria

Yaniv Romano Technion – Israel Institute of Technology

Aymeric Dieuleveut CMAP École Polytechnique

Distribution-free predictive uncertainty quantification

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X^{(k)}, Y^{(k)})_{k=1}^{n}$
- Goal: predict an unseen point $Y^{(n+1)}$ at $X^{(n+1)}$ with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1 - \alpha, \qquad (\text{validity})$$

and \mathcal{C}_{α} should be as small as possible, in order to be informative.

- ► Validity should be ensured
 - in finite samples
 - o for all data distribution and underlying learnt model

Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al., 2018) builds an estimated predictive set \widehat{C}_{α} based on *n* data points.

Conformal prediction achieves marginal validity (Vovk et al., 2005)

 \widehat{C}_{α} outputted by conformal prediction is such that for any distribution \mathcal{D} on $(\mathcal{X}, \mathcal{Y})$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right) \geq 1 - \alpha.$$

Split Conformal Prediction (SCP)^{1,2,3}: regression toy example

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

- ▶ Predict with $\hat{\mu}$
- Get the |residuals|, a.k.a. conformity scores
- Compute the (1α) empirical quantile of $S = \{|\text{residuals}|\}_{Cal} \cup \{+\infty\},\$ noted $q_{1-\alpha}(S)$

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

prediction step

¹Vovk et al. (2005), Algorithmic Learning in a Random World ²Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML ³Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B

Conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002; Lei et al., 2018) builds an estimated predictive set \widehat{C}_{α} based on *n* data points.

Conformal prediction achieves marginal validity (Vovk et al., 2005) \hat{C}_{α} outputted by conformal prediction is such that for any distribution \mathcal{D} on

 $(\mathcal{X}, \mathcal{Y})$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right) \geq 1 - \alpha.$$

× Marginal coverage: $\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)} = x\right) \geq 1 - \alpha.$

$\widehat{C}_{\alpha} =$ estimated predictive set based on *n* data points.

Distribution-free X-conditional validity

 \widehat{C}_{α} achieves distribution-free X-conditional validity if for any distribution \mathcal{D} , it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right) | X^{(n+1)}\right) \stackrel{a.s.}{\geq} 1 - \alpha.$$

Limits of distribution-free conditional predictive uncertainty quantification

Impossibility results (Vovk, 2012; Lei and Wasserman, 2014)⁴

If \widehat{C}_{α} is distribution-free X-conditionally valid, then, for any \mathcal{D} , for \mathcal{D}_X -almost all \mathcal{D}_X -non-atoms $\mathbf{x} \in \mathcal{X}$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes(n)}}\left\{\max\left(\widehat{\mathcal{C}}_{\alpha}(x)\right)=\infty\right\}\geq 1-\alpha.$$

- \hookrightarrow distribution-free X-conditional hardness result apply beyond CP
- \hookrightarrow X-conditional estimators are overly large *even on easy cases*
- \hookrightarrow the lower bound is tight

⁴An analogous statement is also available for the classification framework.

	X-conditionally valid	Non X-conditionally valid
"Pathological" distribution	X-cov.: ✓ Length: ✓	X-cov.: X Length: not relevant
"Smooth" distribution	X-cov.: ✓ Length: X	X-cov.: ≈ Length: ✓

- Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al. (2021); Sesia and Romano (2021); Izbicki et al. (2022)
- Approximate conditional coverage

 \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023); Gibbs et al. (2023) Target $\mathbb{P}(Y^{(n+1)} \in \widehat{C}_{\alpha}(X^{(n+1)}) | X^{(n+1)} \in \mathcal{R}(x)) \ge 1 - \alpha$

Non exhaustive references.

 $\widehat{C}_{\alpha} =$ estimated predictive set based on *n* data points.

 \mathcal{G} a set of "groups" (i.e., define G a random variable taking its values in \mathcal{G}).

Distribution-free G-conditional validity (GCV)

 \widehat{C}_{α} achieves distribution-free \mathcal{G} -conditional validity if for any distribution \mathcal{D} on $(\mathcal{X}, \mathcal{G}, \mathcal{Y})$, it holds that:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(Y^{(n+1)} \in \widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)}, \mathcal{G}^{(n+1)}\right) | \mathcal{G}^{(n+1)}\right) \stackrel{a.s.}{\geq} 1 - \alpha.$$

General $\mathcal{G}CV$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)⁵

If any \widehat{C}_{α} is distribution-free \mathcal{G} -conditionally valid then for any distribution \mathcal{D} , for any group $g \in \mathcal{G}$ such that $\mathcal{D}_{\mathcal{G}}(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\max\left(\widehat{C}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \ge 1 - \alpha - \Delta_{g,n}$$
$$\ge 1 - \alpha - \mathcal{D}_{G}(g)\sqrt{n+1}.$$

Irreducible term: consider \widehat{C}_{α} outputting \mathcal{Y} with probability $1 - \alpha$ and \emptyset otherwise.

 $\Delta_{g,n}$ term: smaller than $\mathcal{D}_G(g)\sqrt{n+1}$

 \hookrightarrow gets negligible (making the lower bound nearly $1 - \alpha$) only for low probability groups compared to *n*.

⁵An analogous statement is also available for the classification framework.

Restricting the link between G and (X or Y) does not allow informative $\mathcal{G}CV$

 $G \perp X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is $\mathcal{G}CV$ under $G \perp X$, then for any distribution \mathcal{D} such that $G \perp X$, for any group g such that $\mathcal{D}_G(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\operatorname{\mathsf{mes}}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty \right) \geq 1 - \alpha - \Delta_{g,n} \geq 1 - \alpha - \mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}.$$

 $Y \perp G \mid X$ hardness result (Z., Josse, Romano and Dieuleveut, 2024)

If any \widehat{C}_{α} is MCV under $Y \perp G \mid X$, then for any distribution \mathcal{D} such that $Y \perp G \mid X$, for any mask *m* such that $\frac{1}{\sqrt{2}} \geq \mathcal{D}_G(g) > 0$, it holds:

$$\mathbb{P}_{\mathcal{D}^{\otimes (n+1)}}\left(\mathsf{mes}\left(\widehat{\mathcal{C}}_{\alpha}\left(X^{(n+1)},g\right)\right) = \infty\right) \ge 1 - \alpha - \Delta_{g,n} \ge 1 - \alpha - 2\mathcal{D}_{\mathcal{G}}(g)\sqrt{n+1}$$

 \Rightarrow need to restrict both the link between G and X, as well as between G and Y.

Analogous statements are also available for the classification framework.

	\mathcal{G} -conditionally valid even when $G \not\perp (X, Y)$	\mathcal{G} -conditionally valid at most if $G \perp (X, Y)$
"Pathological" distribution	G-cov.: ✓ Length: ✓	G-cov.: ≯ Length: not relevant
"Smooth" distribution	G-cov.: ✓ Length: ≯	$\mathcal{G} ext{-cov.:} pprox$ Length: 🗸

Application to learning with missing covariates

Missing values are ubiquitous and challenging

YX1X2X3Mask
$$M =$$
22563001968NA0019536007NA9NA10134900020NANA11198NA401

Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$

 $\hookrightarrow 2^d$ potential masks.

- $\hookrightarrow M$ can depend on X or Y (depending on the missing mechanism⁶).
- \Rightarrow Statistical and computational challenges.

⁶Three mechanisms connecting X and M from Rubin (1976), Inference and missing data, Biometrika

Impute-then-predict procedures are widely used.

1. Replace NA using an imputation function (e.g. the mean), noted ϕ .

2. Train your algorithm (Random Forest, Neural Nets, etc.) on the imputed data: $\left\{ \underbrace{\phi(X_{obs(M^{(k)})}^{(k)}, M^{(k)})}_{U^{(k)} = imputed X^{(k)}}, Y^{(k)} \right\}_{k=1}^{n}$

 \hookrightarrow we consider an impute-then-predict pipeline in this work.

Goals of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} 1 - \alpha.$$
 (MCV)

Exchangeability after imputation (Z., Dieuleveut, Josse and Romano, 2023) Assume $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n}$ are i.i.d. (or exchangeable). Then, for any missing mechanism, for almost all imputation function ϕ : $\left(\phi\left(X_{obs(M^{(k)})}^{(k)}, M^{(k)}\right), Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

 \Rightarrow Conformal Prediction (CP), applied on an imputed data set still enjoys marginal guarantees:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)\right\}\geq 1-\alpha.$$

CP is marginally valid on imputed data sets

$$Y=eta^{ op}X+arepsilon$$
 , $eta=(1,2,-1)^{ op}$, X and $arepsilon$ Gaussian.

- ✓ Marginal (i.e. average) coverage (MV) is indeed recovered!
- X Mask-conditional-validity (MCV) is not attained
 - $\,\hookrightarrow\,$ Missing values induce heteroskedasticity

(supported by theory under (non-)parametric assumptions)

Conformalization step is independent of the important variable: the mask!

Observation: the α -correction term is computed > among all the data points, regardless of their mask!

Warning: 2^d possible masks

 \Rightarrow Splitting the calibration set by mask is infeasible (lack of data)!

Mask-conditional-validity of CP-MDA-Nested* (Z., Josse, Romano and Dieuleveut, 2024)

Under the assumptions that:

- *M* ⊥ (*X*, *Y*),
- $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are i.i.d.,

then, for almost all imputation function, CP-MDA-Nested* reaches (MCV) at the level $1 - 2\alpha$, that is:

$$\mathbb{P}\left\{Y^{(n+1)}\in\widehat{C}_{\alpha}\left(X^{(n+1)},M^{(n+1)}\right)|M^{(n+1)}\right\}\overset{a.s.}{\geq}1-2\alpha.$$

 \hookrightarrow **Experiments beyond independence:** under various MAR and MNAR mechanisms, and to some extent when $Y \not\perp M | X$, CP-MDA-Nested* maintains empirical MCV.

Validities of predictive uncertainty quantification with missing values

Goal: predict $Y^{(n+1)}$ with confidence $1 - \alpha$, i.e. build the smallest C_{α} such that:

1. Marginal Validity (MV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right)\right\} \ge 1 - \alpha. \tag{MV}$$

2. Mask-Conditional-Validity (MCV)

$$\mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, M^{(n+1)}\right) | M^{(n+1)}\right\} \stackrel{a.s.}{\geq} 1 - \alpha.$$
 (MCV)

	Exisiting approaches	CP-MDA-Nested* (Z., Josse, Romano and Dieuleveut, 2024)
(MV)	✓ (Z., Dieuleveut, Josse, and Romano, 2023)	 Image: A set of the set of the
(MCV)	×	✓ under $M \perp (X, Y)$

- Distribution-free group-conditional-coverage is hard to ensure theoretically on "rare" groups
- Weaker notions are empirically achievable
- These hardness results disappear if $G \perp (X, Y)$
- This strong assumption is relevant in the missing values context
- We propose an algorithm achieving MCV under G ⊥ (X, Y), empirically robust when G ⊥ (X, Y)

Thanks for listening and feel free to reach out to us!

Questions?

- Chernozhukov, V., Wüthrich, K., and Zhu, Y. (2021). Distributional conformal prediction. *Proceedings of the National Academy of Sciences*, 118(48).
- Gibbs, I., Cherian, J. J., and Candès, E. J. (2023). Conformal prediction with conditional guarantees. arXiv: 2305.12616.
- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1).
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). CD-split and HPD-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87).
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.

- Kivaranovic, D., Johnson, K. D., and Leeb, H. (2020). Adaptive, Distribution-Free Prediction Intervals for Deep Networks. In *International Conference on Artificial Intelligence and Statistics*. PMLR.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 76(1).
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML*. Springer.

- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020). With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. In Advances in Neural Information Processing Systems. Curran Associates, Inc.
- Rubin, D. B. (1976). Inference and missing data. *Biometrika*, 63(3).
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In *Advances in Neural Information Processing Systems*. Curran Associates, Inc.
- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning. PMLR.

- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Zaffran, M., Dieuleveut, A., Josse, J., and Romano, Y. (2023). Conformal prediction with missing values. In *Proceedings of the 40th International Conference on Machine Learning*. PMLR.
- Zaffran, M., Josse, J., Romano, Y., and Dieuleveut, A. (2024). Predictive uncertainty quantification with missing covariates. *arXiv:2405.15641*.