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Supervised learning context and quantile regression

Split Conformal Prediction (SCP)

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



Supervised learning setting

• Data: (Xi ,Yi )
n
i=1 ∈

(
Rd ,Y

)n
• Goal: Learn a function f̂ such that

i ∈ J1, nK : f̂ (Xi ) ' Yi︸ ︷︷ ︸
training data

and moreover f̂ (Xn+1) ' Yn+1︸ ︷︷ ︸
prediction on test (unseen) data

• The supervised learning task is defined by the type of outcome:

◦ Y = {−1, 1} 7−→ classification

◦ Y = R 7−→ regression
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Supervised learning in theoretical practice

• Loss function: `(Y , f (X )) evaluates how close f (X ) is to Y
◦ Classification  0-1 loss: `(Y , f (X )) = 1Y 6=f (X )

◦ Regression  Quadratic loss: `(Y , f (X )) = (Y − f (X ))2

• f̂ should be as good as possible over all the possible X :

↪→ focus on the risk of f̂

Risk`(f ) = E
[
`
(
Yn+1, f (Xn+1)

)]
• A minimizer f ? of the risk is called a Bayes predictor

◦ Classification  f ?(X ) = argmax
k∈{−1,1}

P(Y = k |X )

◦ Regression  f ?(X ) = E [Y |X ]

• How to obtain f ? (i.e. minimize Risk`(f )) when the distribution of

(Xn+1,Yn+1) is unknown?

↪→ Minimize the empirical risk

R̂n(f ) :=
1

n

n∑
i=1

`(Yi , f (Xi )).
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On the importance of quantifying uncertainty
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↪→ Same predictions, yet 3 distinct underlying phenomena!

=⇒ Quantifying uncertainty conveys this information.
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Reminder about quantiles

• Quantile level β ∈ [0, 1]

• QX (β) := inf{x ∈ R,P(X ≤ x) ≥ β}
:= inf{x ∈ R,FX (x) ≥ β}

• Empirical quantile qβ(X1, . . . ,Xn)

:= dβ × ne smallest value of (X1, . . . ,Xn)

Example of quantile: the median

β = 0.5

↪→ q0.5(X1, . . . ,Xn) is the empirical median of (X1, . . . ,Xn);

↪→ QX (0.5) represents the median of the distribution of X .

Similarly, let qβ,inf(X1, . . . ,Xn) := bβ × nc smallest value of (X1, . . . ,Xn)
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Median regression

• The Bayes predictor depends on the chosen loss function.
↪→ Bayes predictor f ? ∈ argmin

f
Risk`(f )

:= argmin
f

E [`(Y , f (X ))]

• Mean Absolute Error (MAE): `(Y ,Y ′) = |Y − Y ′|
Associated risk: Risk`(f ) = E [|Y − f (X )|]

⇒ f ?(X ) = median [Y |X ] = QY |X (0.5)
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Generalization: Quantile regression

• Quantile level β ∈ [0, 1]

• Pinball loss

`β(Y ,Y ′) = β|Y − Y ′|1{|Y−Y ′|≥0} + (1− β)|Y − Y ′|1{|Y−Y ′|≤0}
Associated risk: Risk`β (f ) = E [`β(Y , f (X ))]

Bayes predictor: f ? ∈ argmin
f

Risk`β (f )

⇒ f ?(X ) = QY |X (β)

−4 −2 0 2 4
Y − f (X)

0

1

2

3

4

` β
(Y
,f

(X
))

β = 0.05

β = 0.1

β = 0.3

β = 0.5

β = 0.7

β = 0.9

β = 0.95

1

7 / 79



Quantile regression: foundations

• Link between the pinball loss and the quantiles?

Set q? ∈ argmin
q

E [`β(Y − q)]. Then,

0 =

∫ +∞

−∞
`′β(y − q?)dfY (y)

= (β − 1)

∫ q?

−∞
dfY (y) + β

∫ +∞

q?
dfY (y)

0 = (β − 1)FY (q?) + β(1− FY (q?))

(1− β)FY (q?) = β(1− FY (q?))

β = FY (q?)

⇔ q? = F−1Y (β)
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Quantile regression: visualisation
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Warning

No theoretical guarantee with a finite sample!

P
(
Y ∈

[
Q̂Y |X (β/2); Q̂Y |X (1− β/2)

])
6= 1− β
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Supervised learning context and quantile regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Avoiding data splitting: full conformal and out-of-bags approaches

Beyond exchangeability



Quantifying predictive uncertainty

• (X ,Y ) ∈ Rd ×R random variables

• n training samples (Xi ,Yi )
n
i=1

• Goal: predict an unseen point Yn+1 at Xn+1 with confidence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive set Cα such that:

P {Yn+1 ∈ Cα (Xn+1)} ≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative

For example: α = 0.1 and obtain a 90% coverage interval

• Construction of the predictive intervals should be

◦ agnostic to the model

◦ agnostic to the data distribution

◦ valid in finite samples
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Split Conformal Prediction (SCP)1,2,3: toy example
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Vovk et al. (2005), Algorithmic Learning in a Random World
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Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
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Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: training step
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Split Conformal Prediction (SCP)1,2,3: calibration step
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I Get the |residuals|, a.k.a.

conformity scores

I Compute the (1− α) empirical

quantile of

S = {|residuals|}Cal ∪ {+∞},
noted q1−α (S)
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Split Conformal Prediction (SCP)1,2,3: prediction step
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I Predict with µ̂

I Build Ĉα(x): [µ̂(x)± q1−α (S)]
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Vovk et al. (2005), Algorithmic Learning in a Random World

2
Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML

3
Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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SCP: implementation details

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get µ̂ by training the algorithm A on the proper training set

3. On the calibration set, get prediction values with µ̂

4. Obtain a set of #Cal + 1 conformity scores :

S = {Si = |µ̂(Xi )− Yi |, i ∈ Cal} ∪ {+∞}
(+ worst-case scenario)

5. Compute the 1− α quantile of these scores, noted q1−α (S)

6. For a new point Xn+1, return

Ĉα(Xn+1) = [µ̂(Xn+1)− q1−α (S); µ̂(Xn+1) + q1−α (S)]
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SCP: theoretical foundation

Definition (Exchangeability)

(Xi ,Yi )
n
i=1 are exchangeable if, for any permutation σ of J1, nK:

L ((X1,Y1) , . . . , (Xn,Yn)) = L
((
Xσ(1),Yσ(1)

)
, . . . ,

(
Xσ(n),Yσ(n)

))
,

where L designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

• The components of N



m
...
...

m

 ,


σ2

. . . γ2

γ2 . . .

σ2




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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable4. SCP applied on (Xi ,Yi )

n
i=1 outputs

Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

4Only the calibration and test data need to be exchangeable.
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Proof architecture of SCP guarantees

Lemma (Quantile lemma)

If (U1, . . . ,Un,Un+1) are exchangeable, then for any β ∈]0, 1[:

P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≥ β.

Additionally, if U1, . . . ,Un,Un+1 are almost surely distinct, then:

P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≤ β +
1

n + 1
.

When (Xi ,Yi )
n+1
i=1 are exchangeable, the scores {Si}i∈Cal∪{Sn+1} are exchangeable.

↪→ applying the quantile lemma to the scores concludes the proof.
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Proof of the quantile lemma

First note that Un+1 ≤ qβ(U1, . . . ,Un,+∞)⇐⇒ Un+1 ≤ qβ(U1, . . . ,Un,Un+1).

Then, by definition of qβ:

Un+1 ≤ qβ(U1, . . . ,Un,Un+1)⇐⇒ rank(Un+1) ≤ dβ(n + 1)e

By exchangeability, rank(Un+1) ∼ U{1, . . . , n + 1}. Thus:

P (rank(Un+1) ≤ dβ(n + 1)e) ≥ dβ(n + 1)e
n + 1

≥ β.
If U1, . . . ,Un,Un+1 are almost surely distinct (without ties):

P (rank(Un+1) ≤ dβ(n + 1)e) =
dβ(n + 1)e

n + 1

≤ 1 + β(n + 1)

n + 1
= β +

1

n + 1
.
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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005); Lei et al. (2018).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable4. SCP applied on (Xi ,Yi )

n
i=1 outputs

Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores {Si}i∈Cal ∪ {Sn+1} are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

4Only the calibration and test data need to be exchangeable.
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Conditional coverage implies adaptiveness

• Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)

}
the errors may differ across regions

of the input space (i.e. non-adaptive)

• Conditional coverage: P
{
Yn+1 ∈ Ĉα (Xn+1) |Xn+1

}
errors are evenly distributed

(i.e. fully adaptive)

• Conditional coverage is stronger than marginal coverage

no coverage marginal conditional
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Standard mean-regression SCP is not adaptive
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I Build Ĉα(x): [µ̂(x)± q1−α (S)]
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Informative conditional coverage as such is impossible

• Impossibility results

↪→ Lei and Wasserman (2014); Vovk (2012); Barber et al. (2021a)

Without distribution assumption, in finite sample, a perfectly condition-

ally valid Ĉα is such that P
{

mes
(
Ĉα(x)

)
=∞

}
= 1 for any non-

atomic x .

• Approximate conditional coverage

↪→ Romano et al. (2020a); Guan (2022); Jung et al. (2023); Gibbs et al. (2023)

Target P(Yn+1 ∈ Ĉα|Xn+1 ∈ R(x)) ≥ 1− α
• Asymptotic (with the sample size) conditional coverage

↪→ Romano et al. (2019); Kivaranovic et al. (2020); Chernozhukov et al.

(2021); Sesia and Romano (2021); Izbicki et al. (2022)

Non exhaustive references.
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Conformalized Quantile Regression (CQR)5
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Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5: training step
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Conformalized Quantile Regression (CQR)5: calibration step

+

+

+ ++
++

+

-
--

-

++

- -

I Predict with Q̂Rlower and

Q̂Rupper

I Get the scores

S = {Si}Cal ∪ {+∞}
I Compute the (1− α) empirical

quantile of S, noted q1−α (S)

↪→ Si := max
{

Q̂Rlower (Xi )− Yi ,Yi − Q̂Rupper (Xi )
}

5
Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)5: prediction step
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5
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CQR: implementation details

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Q̂Rlower and Q̂Rupper by training the algorithm A on the proper training

set

3. Obtain a set of #Cal + 1 conformity scores S:

S = {Si = max
(

Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )
)
, i ∈ Cal} ∪ {+∞}

4. Compute the 1− α quantile of these scores, noted q1−α (S)

5. For a new point Xn+1, return

Ĉα(Xn+1) = [Q̂Rlower(Xn+1)− q1−α (S); Q̂Rupper(Xn+1) + q1−α (S)]
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CQR: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Romano

et al. (2019).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable6. CQR on (Xi ,Yi )

n
i=1 outputs Ĉα (·) such

that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

Proof: application of the quantile lemma.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

6Only the calibration and test data need to be exchangeable.
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SCP is defined by the conformity score function

Calib. Train

1. Randomly split the training data into a proper training set (size #Tr) and a

calibration set (size #Cal)

2. Get Â by training the algorithm A on the proper training set

3. On the calibration set, obtain #Cal + 1 conformity scores

S = {Si = s (Â(Xi ),Yi ), i ∈ Cal} ∪ {+∞}
Ex 1: s (Â(Xi ),Yi ) := |µ̂(Xi )− Yi | in regression with standard scores

Ex 2: s (Â(Xi ),Yi ) := max
(

Q̂Rlower(Xi )− Yi ,Yi − Q̂Rupper(Xi )
)

in CQR

4. Compute the 1− α quantile of these scores, noted q1−α (S)

5. For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
↪→ The definition of the conformity scores is crucial, as they incorporate almost all

the information: data + underlying model
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SCP: theoretical guarantees

This procedure enjoys the finite sample guarantee proposed and proved in Vovk

et al. (2005).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable7. SCP on (Xi ,Yi )

n
i=1 outputs Ĉα (·) such

that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal ∪ {Sn+1} are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

#Cal + 1
.

Proof: application of the quantile lemma.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α

7Only the calibration and test data need to be exchangeable.
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SCP: what choices for the regression scores?

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
Standard SCP Locally weighted SCP CQR

Vovk et al. (2005) Lei et al. (2018) Romano et al. (2019)

s (Â(X ),Y ) |µ̂(X )− Y | |µ̂(X )− Y |
ρ̂(X )

max(Q̂Rlower(X )− Y ,

Y − Q̂Rupper(X ))

Ĉα(x) [µ̂(x)± q1−α (S)] [µ̂(x)± q1−α (S)ρ̂(x)]
[Q̂Rlower(x)− q1−α (S);

Q̂Rupper(x) + q1−α (S)]
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SCP: standard classification

• Y ∈ {1, . . . ,C} (C classes)

• Â(X ) = (p̂1(X ), . . . , p̂C (X )) (estimated probabilities)

• s (Â(X ),Y ) := 1− (Â(X ))Y

• For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
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SCP: standard classification in practice

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.15

0.60

0.25

0.15

0.55

0.30

0.20

0.50

0.30

0.15

0.45

0.40

0.15

0.40

0.45

0.25

0.35

0.40

0.20

0.45

0.35

Si 0.05 0.1 0.15 0.40 0.45 0.50 0.55 0.55 0.6 0.65

• q1−α(S) = 0.65

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1),“dog”) = 0.95 “dog” /∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1),“tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1),“cat”) = 0.65 ≤ q1−α(S) “cat” ∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”, “cat”}
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SCP: standard classification in practice, cont’d

Ex: Y ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set
Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.05

0.85

0.10

0.05

0.80

0.15

0.05

0.75

0.20

0.05

0.70

0.25

0.10

0.25

0.65

0.10

0.30

0.60

0.15

0.30

0.55

Si 0.05 0.1 0.15 0.15 0.20 0.25 0.30 0.35 0.40 0.45

• q1−α(S) = 0.45

• Â(Xn+1) = (0.05, 0.60, 0.35)

↪→ s (Â(Xn+1), “dog”) = 0.95 “dog” /∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xn+1)

↪→ s (Â(Xn+1), “cat”) = 0.65 “cat” /∈ Ĉα(Xn+1)

• Ĉα(Xn+1) = {“tiger”}
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SCP: limits of the standard classification case

The standard classification conformity score function leads to:

3 smallest prediction sets on average

7 undercovering (overcovering) hard (easy) subgroups

(similar to the standard mean regression case!)

⇒ Other score functions can be built to improve adaptiveness

(as in regression with localized scores)
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SCP: classification with Adaptive Prediction Sets8

1. Sort in decreasing order p̂σ(1)(X ) ≥ . . . ≥ p̂σ(C)(X )

2. s (Â(X ),Y ) :=

σ−1(Y )∑
k=1

p̂σ(k)(X ) (sum of the estimated probabilities

associated to classes at least as large as that of the true class Y )

3. Return the set of classes {σn+1(1), . . . , σn+1(r?)}, where

r? = argmax
1≤r≤C

{
r∑

k=1

p̂σn+1(k)(Xn+1) < q1−α(S)

}
+ 1
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8
Romano et al. (2020b), Classification with Valid and Adaptive Coverage, NeurIPS

Figure highly inspired by Angelopoulos and Bates (2023). 37 / 79



SCP: classification with Adaptive Prediction Sets in practice

Ex: Y ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set
Cali “dog” “dog” “dog” “tiger” “tiger” “tiger” “tiger” “cat” “cat” “cat”

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.05

0.85

0.10

0.05

0.80

0.15

0.05

0.75

0.20

0.10

0.75

0.15

0.25

0.40

0.35

0.10

0.30

0.60

0.15

0.30

0.55

Si 0.95 0.90 0.85 0.85 0.80 0.75 0.75 0.75 0.60 0.55

• q1−α(S) = 0.95

↪→ Ex 1: Â(Xn+1) = (0.05, 0.45, 0.5), r? = 2

Ĉα(Xn+1) = {“tiger”, “cat”}
↪→ Ex 2: Â(Xn+1) = (0.03, 0.95, 0.02), r? = 1

Ĉα(Xn+1) = {“tiger”}
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Split Conformal Prediction: summary

• Simple procedure which quantifies the uncertainty of any predictive model Â

by returning predictive regions

• Finite-sample guarantees

• Distribution-free as long as the data are exchangeable (and so are the scores)

• Marginal theoretical guarantee over the joint (X ,Y ) distribution, and not con-

ditional, i.e., no guarantee that for any x :

P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α.

↪→ marginal also over the whole calibration set and the test point!
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Challenges: open questions (non exhaustive!)

• Conditional coverage (∼ Previous Section)

• Computational cost vs statistical power (Next Section)

• Exchangeability (Last Section)
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Splitting the data might not be desired

SCP suffers from data splitting:

• lower statistical efficiency (lower model accuracy and higher predictive set size)

• higher statistical variability

Can we avoid splitting the data set?
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The naive idea does not enjoy valid coverage (even empirically)

• A naive idea:

◦ Get Â by training the algorithm A on {(X1,Y1), . . . , (Xn,Yn)}.
◦ compute the empirical quantile q1−α(S) of the set of scores

S =
{

s
(
Â (Xi ) ,Yi

)}n

i=1
∪ {∞}.

◦ output the set
{
y such that s

(
Â (Xn+1) , y

)
≤ q1−α(S)

}
.

7 Â has been obtained using the training set {(X1,Y1), . . . , (Xn,Yn)} but did

not use Xn+1.

⇒ s
(
Â (Xn+1) , y

)
stochastically dominates any element of{

s
(
Â (Xi ) ,Yi

)}n

i=1
.
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Full Conformal Prediction9 does not discard training points!

• Full (or transductive) Conformal Prediction

◦ avoids data splitting

◦ at the cost of many more model fits

• Idea: the most probable labels Yn+1 live in Y, and have a low enough conformity

score. By looping over all possible y ∈ Y, the ones leading to the smallest

conformity scores will be found.

9
Vovk et al. (2005), Algorithmic Learning in a Random World
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Full Conformal Prediction (CP): recovering exchangeability

For any candidate (Xn+1, y),

1. Get Ây by training A on {(X1,Y1), . . . , (Xn,Yn)} ∪ {(Xn+1, y)}
2. Obtain a set of training scores

S(train)y =
{

s (Ây (Xi ),Yi )
}n

i=1
∪ { s (Ây (Xn+1), y)}

and compute their 1− α empirical quantile q1−α
(
S(train)y

)
3. Output the set

{
y such that s

(
Ây (Xn+1) , y

)
≤ q1−α

(
S(train)y

)}
3 Test point treated in the same way than train points

7 Computationally costly
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Full CP: theoretical foundation

Definition (Symmetrical algorithm)

A deterministic algorithm A : (U1, . . . ,Un) 7→ Â is symmetric if for any

permutation σ of J1, nK:

A (U1, . . . ,Un)
a.s.
= A

(
Uσ(1), . . . ,Uσ(n)

)
.
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Full CP: theoretical guarantees

Full CP enjoys finite sample guarantees proved in Vovk et al. (2005).

Theorem

Suppose that

(i) (Xi ,Yi )
n+1
i=1 are exchangeable,

(ii) the algorithm A is symmetric.

Full CP applied on (Xi ,Yi )
n
i=1 ∪ {Xn+1} outputs Ĉα (·) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

Additionally, if the scores are a.s. distinct:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α +

1

n + 1
.

7 Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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Interpolation regime

FCP sets with an interpolating algorithm

Assume A interpolates:

• Â = A ((x1, y1), . . . , (xn+1, yn+1))

• Â(xk)− yk = 0 for any k ∈ J1, n + 1K

⇒ Full Conformal Prediction outputs Y (the whole label space) for any new test

point!
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Jackknife: the naive idea does not enjoy valid coverage

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO scores S =
{
|Â−i (Xi )− Yi |

}
i
∪ {+∞} (in standard mean regression)

• Get Â by training A on Dn

• Build the predictive interval:
[
Â(Xn+1)± q1−α(S)

]
Warning

No guarantee on the prediction of Â with scores based on (Â−i )i , without

assuming a form of stability on A.

48 / 79



Jackknife+10

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Get Â−i by training A on Dn \ (Xi ,Yi )

• LOO predictions / predictive intervals

Sup/down =
{
Â−i (Xn+1)± |Â−i (Xi )− Yi |

}
i
∪ {±∞}

(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric: P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− 2α.

10
Barber et al. (2021b), Predictive Inference with the jackknife+, The Annals of Statistics

Recall qβ,inf(X1, . . . ,Xn) := bβ × nc smallest value of (X1, . . . ,Xn)
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CV+ 11 (see also cross-conformal predictors: Vovk, 2015)

• Based on cross-validation residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Split Dn into K folds F1, . . . ,FK

• Get Â−Fk
by training A on Dn \ Fk

• Cross-val predictions / predictive intervals

Sup/down =

{{
Â−Fk

(Xn+1)± |Â−Fk
(Xi )− Yi |

}
i∈Fk

}
k

∪ {±∞}
(in standard mean regression)

• Build the predictive interval: [qα,inf(Sdown); q1−α(Sup)]

Theorem

If Dn ∪ (Xn+1,Yn+1) are exchangeable and A is symmetric:

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− 2α−min

(
2(1− 1/K )

n/K + 1
,

1− K/n

K + 1

)
≥ 1− 2α−

√
2/n.

11
Barber et al. (2021b), Predictive Inference with the jackknife+, The Annals of Statistics

Recall qβ,inf(X1, . . . ,Xn) := bβ × nc smallest value of (X1, . . . ,Xn) 50 / 79



General overview

SCP CV+ FCPJackknife+

Computational efficiency

Statistical efficiency

Nested Conformal Prediction

• Generalized framework encapsulating out-of-sample methods: Nested CP

(Gupta et al., 2022)

• Accelerating FCP: Nouretdinov et al. (2001); Lei (2019); Ndiaye and Takeuchi

(2019); Cherubin et al. (2021); Ndiaye and Takeuchi (2022); Ndiaye (2022)

Non exhaustive references.
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Exchangeability does not hold in many practical applications

• CP requires exchangeable data points to ensure validity

7 Covariate shift, i.e. LX changes but LY |X stays constant

7 Label shift, i.e. LY changes but LX |Y stays constant

7 Arbitrary distribution shift

7 Possibly many shifts, not only one
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Covariate shift (Tibshirani et al., 2019)12

• Setting:

◦ (X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ PX × PY |X

◦ (Xn+1,Yn+1) ∼ P̃X × PY |X

• Idea: give more importance to calibration points that are closer in distribution

to the test point

• In practice:

1. estimate the likelihood ratio w(Xi ) =
dP̃X (Xi )

dPX (Xi )

2. normalize the weights, i.e. ωi = ω(Xi ) =
w(Xi )∑n+1
j=1 w(Xj)

3. outputs Ĉα(Xn+1) ={
y : s (Â(Xn+1), y) ≤ q1−α ({ωiSi}i∈Cal ∪ {+∞})

}
12
Tibshirani et al. (2019), Conformal Prediction Under Covariate Shift, NeurIPS
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Label shift (Podkopaev and Ramdas, 2021)13

• Setting:
◦ (X1,Y1), . . . , (Xn,Yn)

i.i.d.∼ PX |Y × PY

◦ (Xn+1,Yn+1) ∼ PX |Y × P̃Y

◦ Classification

• Idea: give more importance to calibration points that are closer in distribution

to the test point

• Trouble: the actual test labels are unknown
• In practice:

1. estimate the likelihood ratio w(Yi ) =
dP̃Y (Yi )

dPY (Yi )
using algorithms from the existing

label shift literature

2. normalize the weights, i.e. ωy
i = ωy (Xi ) =

w(Yi )∑n
j=1 w(Yj) + w(y)

3. outputs Ĉα(Xn+1) ={
y : s (Â(Xn+1), y) ≤ q1−α ({ωy

i Si}i∈Cal ∪ {+∞})
}

13
Podkopaev and Ramdas (2021), Distribution-free uncertainty quantification for classification under label

shift, UAI 54 / 79



Generalizations

• Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the

distributionally robust optimization literature

• Two major general theoretical results beyond exchangeability:

◦ Chernozhukov et al. (2018)

↪→ If the learnt model is accurate and the data noise is strongly mixing, then CP

is valid asymptotically 3

◦ Barber et al. (2022)

↪→ Quantifies the coverage loss depending on the strength of exchangeability

violation

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α− average violation of exchangeability
by each calibration point

↪→ proposed algorithm: reweighting again!

e.g., in a temporal setting, give higher weights to more recent points.
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Online setting

• Data: T0 random variables (X1,Y1), . . . , (XT0 ,YT0) in Rd ×R
• Aim: predict the response values as well as predictive intervals for T1 subsequent

observations XT0+1, . . . ,XT0+T1 sequentially: at any prediction step t ∈ JT0 +

1,T0 + T1K, Yt−T0 , . . . ,Yt−1 have been revealed

• Build the smallest interval Ĉ t
α such that:

P
{
Yt ∈ Ĉ t

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K,

often simplified in:

1

T1

T0+T1∑
t=T0+1

1
{
Yt ∈ Ĉ t

α (Xt)
}
≈ 1− α.
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Focus on the online setting

Issued from a work with:

Olivier Féron
EDF R&D

FiME

Yannig Goude
EDF R&D

LMO

Julie Josse
PreMeDICaL

INRIA

Aymeric

Dieuleveut

École Polytechnique
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(Online) Time series are not exchangeable

Figure 1: Trend14
Figure 2: Seasonality14

Figure 3: Shift Figure 4: Time dependence

14Images from Yannig Goude class material. 58 / 79



How to adapt to time series?

Usual ideas from the time series literature:

• Consider an online procedure (for each new data, re-train and re-calibrate)

↪→ update to recent observations (trend impact, period of the seasonality,

dependence...)

• Use a sequential split

↪→ use only the past so as to correctly estimate the variance of the residuals (using

the future leads to optimistic residuals and underestimation of their variance)
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Online sequential split conformal prediction (OSSCP)

t = T0 + T1
t = 0 t = T0

Test pointUnused data Proper training set Calibration set

Wisniewski et al. (2020); Kath and Ziel (2021); Zaffran et al. (2022)

↪→ tested on real time series
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Adaptive Conformal Inference (ACI), Gibbs and Candès (2021)

Refitting the model may be insufficient ⇒ adapt the quantile level used on the

calibration’s scores. (distribution shift)

The proposed update scheme is the following:

αt+1 := αt + γ
(
α− 1{Yt /∈ Ĉαt (Xt)}

)
(2)

with α1 = α, γ ≥ 0.

Intuition: if we did make an error, the interval was too small so we want to

increase its length by taking a higher quantile (a smaller αt). Reversely if we

included the point.
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Visualisation of the procedure

0 100 200 300 400 500
t

−1

0

1

ε t

500 550 600 650 700 750 800 850 900 950 1000
t

−1

0

1

ε t

Figure 5: Visualisation of ACI with different values of γ (γ = 0, γ = 0.01, γ = 0.05)
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ACI asymptotic result

Gibbs and Candès (2021) provide an asymptotic validity result for any sequence of

observations.

∣∣∣∣∣∣ 1

T1

T0+T1∑
t=T0+1

1
{
Yt ∈ Ĉαt (Xt)

}
− (1− α)

∣∣∣∣∣∣ ≤ 2

γT1

⇒ favors large γ. But, the higher γ, the more frequent are the infinite intervals.
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Approach

Aim: derive theoretical results on the average length of ACI depending on γ

↪→ Guideline for choosing γ

Approach:

• consider extreme cases (useful in an online context) with simple theoretical
distributions

1. exchangeable

2. Auto-Regressive case (AR(1))

• Assume the calibration is perfect (and more), to rely on Markov Chain theory
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Theoretical analysis of ACI’s length: exchangeable case

Define L(αt) = 2Q(1− αt) the length of the interval predicted by the adaptive

algorithm at time t, and L0 = 2Q(1− α) the length of the interval predicted by

the non-adaptive algorithm (γ = 0).

Theorem

Assume the scores are exchangeable with quantile function Q perfectly estimated

at each time, and other assumptions.

Then, for all γ > 0, (αt)t>0 forms a Markov Chain, that admits a stationary

distribution πγ , and

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ [L]

not.
= Eα̃∼πγ [L(α̃)].

Moreover, as γ → 0,

Eπγ [L] = L0 + Q ′′(1− α)
γ

2
α(1− α) + O(γ3/2).
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Numerical analysis of ACI’s length: AR(1) case

Theorem

Assume the residuals follow an AR(1) process: ε̂t+1 = ϕε̂t + ξt+1 with (ξt)t i.i.d.

random variables and other assumptions, we have:

1

T

T∑
t=1

L(αt)
a.s.−→

T→+∞
Eπγ,ϕ [L].

0.0 0.6 0.85 0.95 0.98 0.99 0.997 0.999
ϕ

0.00

0.02

0.04

0.06

0.08

γ
∗

Figure 6: γ∗ minimizing the average length for each ϕ.
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AgACI: adaptive wrapper around ACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi, 2006) computes

an optimal weighted mean of experts.

AgACI performs 2 independent aggregations: one for each bound (the upper and

lower ones).
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AgACI: adaptive wrapper around ACI, scheme (upper bound)

Experts
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Data generation and simulation settings

Yt = 10 sin (πXt,1Xt,2) + 20 (Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + εt

where the Xt,· ∼ U([0, 1]) and εt is an ARMA(1,1) process:

εt+1 = ϕεt + ξt+1 + θξt ,

with ξt is a white noise of variance σ2.

• ϕ = θ range in [0.1, 0.8, 0.9, 0.95, 0.99].

• We fix σ to keep the variance Var(εt) constant to 10 (or 1).

• We use random forest as regressor.

• For each setting (pair variance and ϕ,θ):

◦ 300 points, the last 100 kept for prediction and evaluation,

◦ 500 repetitions,

⇒ in total, 100× 500 = 50000 predictions are evaluated.
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Visualisation of the results

Le
ng

th
~ 

ef
fic

ie
nc

y


Coverage
~ validity


70 / 79



Results: impact of the temporal dependence, ARMA(1,1), variance 10
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OSSCP (adapted from Lei et al., 2018)

Offline SSCP (adapted from Lei et al., 2018)

EnbPI (Xu & Xie, 2021)

EnbPI V2

ACI (Gibbs & Candès, 2021), γ = 0.01

ACI (Gibbs & Candès, 2021), γ = 0.05

AgACI

ϕ = θ =0.1

ϕ = θ =0.8

ϕ = θ =0.9

ϕ = θ =0.95

ϕ = θ =0.99
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Summary

1. The temporal dependence impacts the validity.

2. Online is significantly better than offline.

3. OSSCP. Achieves valid coverage for ϕ and θ smaller than 0.9, but is not

robust to the increasing dependence.

4. EnbPI. Its validity strongly depends on the data distribution. When the

method is valid, it produces the smallest intervals. EnbPI V2 method should

be preferred.

5. ACI. Achieves valid coverage for every simulation settings with a well chosen

γ, or for dependence such that ϕ < 0.95. It is robust to the strength of the

dependence.

6. AgACI. Achieves valid coverage for every simulation settings, with good

efficiency.
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Forecasting electricity prices with confidence
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Figure 7: Representation of the French electricity spot price, from 2016 to 2019.

73 / 79



Forecasting electricity prices with confidence in 2019

• Forecast for the year 2019.

• Random forest regressor.

• One model per hour, we concatenate the predictions afterwards.

↪→ 24 models

◦ yt ∈ R
◦ xt ∈ Rd , with d = 24 + 24 + 1 + 7 = 56

◦ 3 years for training/calibration, i.e. T0 = 1096 observations

◦ 1 year to forecast, i.e. T1 = 365 observations

24 prices of the day before

24 prices of the 7 days before

Forecasted consumption

Encoded day of the week
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Performance on predicted French electricity Spot price for the year 2019
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Performance on predicted French electricity Spot price:

visualisation of a day
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Figure 8: French electricity spot price, its prediction and its uncertainty with AgACI.
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Take-home-messages on this subsection

• Theoretical results on ACI’s length depending on γ

• ACI useful for time series with general dependency (extensive synthetic

experiments and real data)

• Empirical proposition of an adaptive choice of γ: AgACI
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Recent developments

• Gibbs and Candès (2022) later on also proposes a method not requiring to

choose γ

• Bhatnagar et al. (2023) enjoys anytime regret bound, by leveraging tools from

the strongly adaptive regret minimization literature

• Bastani et al. (2022) proposes an algorithm achieving stronger coverage guar-

antees (conditional on specified overlapping subsets, and threshold calibrated)

without hold-out set

• Angelopoulos et al. (2023) combines CP ideas with control theory ones, to

adaptively improve the predictive intervals depending on the errors structure

Non exhaustive references.
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Useful resources on Conformal Prediction (non exhaustive)

• Book reference: Vovk et al. (2005) (new edition in 2022)

• A gentle tutorial:

◦ Angelopoulos and Bates (2023)

◦ Videos playlist

• Another tutorial: Fontana et al. (2023)

• Ryan Tibshirani introductive lecture’s notes

• GitHub repository with plenty of links: Manokhin (2022)
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https://www.youtube.com/playlist?list=PLBa0oe-LYIHa68NOJbMxDTMMjT8Is4WkI
https://www.stat.berkeley.edu/~ryantibs/statlearn-s23/lectures/conformal.pdf
https://github.com/valeman/awesome-conformal-prediction
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