Adaptive Conformal Predictions for Time Series
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Control validity

Produce predictive intervals around forecasts, enjoying theoreti-
cal guarantees on their coverage with few assumptions.
Optimize efficiency

The intervals should be as small as possible.

R 907% of the time is valid but useless!

Bad example: outputting { 0 10% of the time
O

Setting in time series

e Data: T observations (z1,v1),..., (z7,yn) in RY x R.

e Aim: predict for 77 subse
< Build the smallest interval

quent observations xr 41, . .
CA’(’; such that:

* ) xT()‘I‘Tl'

IP{YtECA'(Z(Xt)} > —a, forte|Ty+1,Ty+ T .

Conformal prediction gives predictive intervals under exchangeability,
not time series. ACI can be used but require a learning rate .

o Theory on ACI’s efficiency depending on the learning rate .

o Algorithm based on ex

bert ageregation, to avoid choosing .

oNumerical tests: synt.

netic and French electricity prices.

Split Conformal Prediction (Vovk et al., 2005)
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e Given any regression function /i

e [or any sample size n (finite-sample)
o [f the (X;,Y;) are exchangeable

P(Ye@(X)) >1—a

— what is essential is that the scores {s;}; are exchangeable.

Adaptive Conformal Inference (ACI, Gibbs and Candes, 2021)

Use an effective quantile level based on a recursive equation and a learning rate v: a1 = oy +_ 7 (oz — 1 {yt 7 é&t(xt)})

>0
[llustration: ACI with v =0, v = 0.01 and ~+ = 0.05. Theory
. e T e For any distribution:
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@ Impact of the learning rate

Exchangeable case

Theorem 1 (informal)

Assume exchangeable scores and perfect calibration. As + — 0:

Average length of intervals from ACI using -
= Average length of intervals from Split Conformal Prediction

+ + x C(a, distribution of the data) .
N —— ——

>(0 in general

Auto-regressive case: ;11 = ve&; + E41.

Theorem 2 (informal)

Assume auto-regressive residuals and pertect calibration. There ex-

ists an optimal v* > 0 minimizing the average length for high .
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Conclusion: choosing v is crucial but difficult.
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€ Numerical results

Y; = 10sin (X1 X0) + 20 (Xy5 — 0.5)° + 10X, 4 + 5X1 5 + &
with X;. ~ U(|0,1]) and e, an ARMA(1,1) process:

Ety1 = et + &1 + 0&,

with & is a white noise of variance o*.

o = @ range in [0.1,0.8,0.9,0.95,0.99].
e o is fixed to keep the variance Var(e;) constant to 10.

e Random forest are used as regressor.
e [or each setting (pair variance and ¢,6):

o 300 points, the last 100 kept for prediction and evaluation,

o 500 repetitions,
=-1n total, 100 x 500 = 50000 predictions are evaluated.

m OSSCP (adapted from Lei et al., 2018) ¢ ACI (Gibbs & Candes, 2021), v = 0.01
o Offline SSCP (ad. from Lei et al., 2018) & ACI (Gibbs & Candes, 2021), v = 0.05
x EnbPI (Xu & Xie, 2021) * AgACI
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e [ncreasing the temporal dependence impacts benchmarks validity:.
e ACI is robust and maintains validity for some well-chosen .

e AgACI is robust and maintains validity without choosing .

Open directions

Theory on AgACI: is it asymptotically valid? Efficient?
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