Conformal Prediction with Missing Values
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Motivations and setting

e One possible missing mechanism: Missing Completely At Random (MCAR)
for all m € {0,1}¢, P(M =m|X) =P(M =m), ie. M 1 X.

Objectives

¢ Characterize the impact of missing values on uncertainty of the outcome.

® Framework: learn Y given X ) and M.

¢ Propose a methodology outputting predictive intervals with conditional

e Most popular strategies to deal with missing values: imputation.
coverage guarantees with respect to each pattern of missing values.

¢ denotes an imputation function (e.g. replaces NA by a constant, the empirical mean, etc).

o(X,Y) € R? x R random variables. Exchangeability after imputation
o d. d
* Missing pattern (mask) M € {0,1}% there are 2¢ patterns. Let (X k) M%) Y(k)) ., be exchangeable. Then, for any missing mechanism, for almost
X = (1,104,2) = M = (0,1,0) and X, = (1,2). all imputation function ¢: (gb (X(Eg(MW), M(k)) M) Y(k))k:1 is exchangeable.

Infinite data

Consider Impute-then-Regress procedures, e.g. g o ¢. Define g; » € argmin [,05 (Y g 0 O(Xops(ar), M ))}, where p; is the pinball loss associated to the quantile of level 0.
gRI—R

Theorem A universally consistent learner trained on deterministically imputed data set will be
Bayes optimal.
For almost all functions ¢ € F., 95 © ¢ 1s Bayes optimal for the pinball-risk of level 9. = it will reach conditional coverage with respect to the missing data pattern.

Finite sample: Conformalized Quantile Regression (CQR, Romano et al., 2019)
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How conditional coverage fails CQR-MDA-Exact: recovering mask-conditional-coverage
R R oY = gTX e * ldea: generate additional missing values in the calibration set.
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Particular case: X ~ N (u, %), and M is MCAR. Then, u,, = p and X, = X. '50 g:g:g:gé:g:g:g:g: I&@gggé:ggg:é:é'g
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Oracle intervals
Under the Gaussian linear model, for any m € {0,1}¢, the oracle length is given by: TraumaBase®: critical care medicine

LZ( ) = 2 X ql_ /2 \/ﬁrms mis(m)|obs(m 531;18 (m) T Uga
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e 7 explanatory variables selected by l--l-xOMask type

e The oracle intervals depend on the regression coeflicients. medical doctors:

Average length
-

e Predict the levels of blood platelets : ggg VDA-Exact
upon arrival at the hospital: | N 1
. argina
e Additional heteroskedasticity is generated by the missing values. o Missing values vary from 0% to «— /
e The oracle intervals depend on the mask in a non-linear fashion. 24% by features, with a total : ./‘ /

— even under MCAR data, it is useful to add the mask as feature. average of 7%. 0.90 0.92 0.94
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