Uncertainty quantification in presence of missing values
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Motivations and setting

e Missing mechanism: Missing Completely At Random (MCAR)
for all m € {0,1}¢, P(M =m|X) =P(M =m), ie. M 1 X.

Objectives

¢ Characterize the impact of missing values on uncertainty of the outcome.

® Framework: learn Y given X ) and M.

¢ Propose a methodology outputting predictive intervals with conditional

e Most popular strategies to deal with missing values: imputation.
coverage guarantees with respect to each pattern of missing values.

¢ denotes an imputation function (e.g. replaces NA by a constant, the empirical mean, etc).

o(X,Y) € R? x R random variables. Exchangeability after imputation
.. d. d
* Missing pattern (mask) M € {0,1}% there are 2¢ patterns. Let (X k) M%) Y(k>) ., belid.. Then, for any missing mechanism, for almost all impu-
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X = (1,0A,2) = M = (0,1,0) and X5 = (1,2). tation function ¢: (gb (Xébi(M(k‘))’ M(k>> M%) Y(k)> - is exchangeable.

Infinite data

Consider Impute-then-Regress procedures, e.g. g o ¢. Define g; » € argmin [p(; (Y g 0 O(Xops(ar), M ))}, where p; is the pinball loss associated to the quantile of level 0.
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Theorem A universally consistent learner trained on deterministically imputed data set will be
Bayes optimal.
For almost all functions ¢ € F., 95 © ¢ 1s Bayes optimal for the pinball-risk of level 9. = it will reach conditional coverage with respect to the missing data pattern.

Finite sample: Conformalized Quantile Regression (CQR, Romano et al., 2019)
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e X is imputed by iterative
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e The oracle intervals depend on the regression coeflicients. e As the training size increases, QR and CQR improve conditional coverage.

e Additional heteroskedasticity is generated by the missing values. e CQR with masking on subsets is not over-conservative on the easiest group.

e The oracle intervals depend on the mask in a non-linear tashion. but requires more calibration data than CQR with masking.

— even under MCAR data, it is usetul to add the mask as feature. e As the training size increases, CQR with masking on subsets — oracle length.
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