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Motivations and setting

Objectives

⋄ Characterize the impact of missing values on uncertainty of the outcome.
⋄ Propose a methodology outputting predictive intervals with conditional

coverage guarantees with respect to each pattern of missing values.

• (X, Y ) ∈ Rd ×R random variables.
• Missing pattern (mask) M ∈ {0, 1}d: there are 2d patterns.

X = (1, NA, 2) ⇒ M = (0, 1, 0) and Xobs(M) = (1, 2).

• Missing mechanism: Missing Completely At Random (MCAR)
for all m ∈ {0, 1}d, P(M = m|X) = P(M = m), i.e. M ⊥⊥ X .

• Framework: learn Y given Xobs(M) and M .
• Most popular strategies to deal with missing values: imputation.

ϕ denotes an imputation function (e.g. replaces NA by a constant, the empirical mean, etc).

Exchangeability after imputation

Let
(
X (k), M (k), Y (k))n

k=1 be i.i.d.. Then, for any missing mechanism, for almost all impu-
tation function ϕ:

(
ϕ
(

X
(k)
obs(M (k)), M (k)

)
, M (k), Y (k)

)n

k=1
is exchangeable.

Infinite data

Consider Impute-then-Regress procedures, e.g. g ◦ ϕ. Define g∗
δ,ϕ ∈ argmin

g:Rd→R

E
[
ρδ

(
Y − g ◦ ϕ(Xobs(M), M)

)]
, where ρδ is the pinball loss associated to the quantile of level δ.

Theorem

For almost all functions ϕ ∈ F I
∞, g∗

δ,ϕ ◦ ϕ is Bayes optimal for the pinball-risk of level δ.

A universally consistent learner trained on deterministically imputed data set will be
Bayes optimal.
⇒ it will reach conditional coverage with respect to the missing data pattern.

Finite sample: Conformalized Quantile Regression (CQR, Romano et al., 2019)
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Randomly split the data to obtain a proper training
set and a calibration set. Keep the test set.

• Given any quantile regression functions q̂inf and q̂sup

• For any (finite) sample size n

• If the (X (k), Y (k)) are exchangeable
P
(

Y ∈ Ĉα̂ (X)
)

≥ 1 − α

⇒ CQR is marginally valid on imputed data sets.

Step 1
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▶Learn q̂inf and q̂sup

Step 2
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▶Predict with q̂inf and q̂sup

▶Get the scores e(k)

▶Compute the (1 − α) × (1 + 1
#Cal) empirical

quantile of the e(k), noted Q1−α̂ (e)
↪→ e(k) := max

{
q̂inf

(
x(k)

)
− y(k), y(k) − q̂sup

(
x(k)

)}

Step 3
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▶Predict with q̂inf and q̂sup

▶Build Ĉα̂(x):
[q̂inf(x) − Q1−α̂ (e) , q̂sup(x) + Q1−α̂ (e)]

How conditional coverage fails
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Iterative ridge ≈ conditional mean + mask
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Oracle length
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• Y = βTX + ε

◦ X ∼ N

 1
1
1

 ,

 1 0.8 0.8
0.8 1 0.8
0.8 0.8 1


◦ β = (1, 2, −1)T ◦ ε ∼ N (0, 1)

• M is MCAR, of probability 0.2.
• X is imputed by iterative

regression.
• CQR based on neural network:

◦ on the imputed data set;
◦ on the imputed data set concatenated

with the mask.

• Marginal validity is achieved.
• Not valid conditionally to the

missing data pattern.
• Adding the mask improves

conditionality.

Insights from the Gaussian linear model

• Y = βTX + ε, with ε ∼ N (0, σ2
ε) ⊥⊥ X , and β ∈ Rd.

• X conditional on M is Gaussian: for all m ∈ {0, 1}d, there exist µm and Σm such that
X|(M = m) ∼ N (µm, Σm).

Particular case: X ∼ N (µ, Σ), and M is MCAR. Then, µm ≡ µ and Σm ≡ Σ.

Oracle intervals

Under the Gaussian linear model, for any m ∈ {0, 1}d, the oracle length is given by:

L∗
α(m) = 2 × q

N (0,1)
1−α/2 ×

√
βmis(m)Σmis(m)|obs(m)β

T
mis(m) + σ2

ε,

with Σmis(m)|obs(m) = Σmis(m),mis(m) − Σmis(m),obs(m)Σobs(m),obs(m)
−1Σobs(m),mis(m).

• The oracle intervals depend on the regression coefficients.
• Additional heteroskedasticity is generated by the missing values.
• The oracle intervals depend on the mask in a non-linear fashion.

↪→ even under MCAR data, it is useful to add the mask as feature.

Proposed algorithms

Idea: generate additional missing values in the calibration set.
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Initial calibration set

e(k) = max
{

q̂inf

(
x̃(k)

)
− y(k), y(k) − q̂sup

(
x̃(k)

)}
Appropriate coverage conditionally to the missing patterns

On Gaussian linear data with d = 10, focus on 2 extreme missing patterns: largest and
smallest number of missing values.

0.2

0.4

0.6

0.8

W
or
st

gr
ou
p
co
ve
ra
ge

2.5

5.0

7.5

10.0

12.5

15.0

W
or
st

gr
ou
p
le
n
gt
h

50 10
0

50
0
10
00

25
00
50
00

20
00
0

10
00
00

Training size

0.5

0.6

0.7

0.8

0.9

B
es
t
gr
ou
p
co
ve
ra
ge

50 10
0

50
0
10
00

25
00
50
00

20
00
0

10
00
00

Training size

2

4

6

8

B
es
t
gr
ou
p
le
n
gt
h

QR

CQR

CQR with masking
on subsets

CQR with masking

1

• As the training size increases, QR and CQR improve conditional coverage.
• CQR with masking on subsets is not over-conservative on the easiest group,

but requires more calibration data than CQR with masking.
• As the training size increases, CQR with masking on subsets −→ oracle length.
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