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Setting

• (X ,Y ) ∈ Rd ×R random variables

• n training samples
(
X (i),Y (i)

)n
i=1

• Goal: predict an unseen point Y (n+1) at X (n+1) with confi-

dence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive

set Cα such that:

P
{
Y (n+1) ∈ Cα

(
X (n+1)

)}
≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative

▶ Construction of the predictive intervals should be

◦ agnostic to the model

◦ agnostic to the data distribution

◦ valid in finite samples
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Split Conformal Prediction (SCP)1,2,3: toy example
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1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: training step

0 2 4
X
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Y

▶ Learn (or get) µ̂

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: calibration step

0 2 4
X

−2
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Y

▶ Predict with µ̂

▶ Get the |residuals|
▶ Compute the (1− α)

empirical quantile of the

|residuals| ∪ {+∞},
noted q1−α (residuals)

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Split Conformal Prediction (SCP)1,2,3: prediction step

0 2 4
X

−2

0
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Y

▶ Predict with µ̂

▶ Build Ĉα(x):

[µ̂(x)± q1−α (residuals)]

1Vovk et al. (2005), Algorithmic Learning in a Random World
2Papadopoulos et al. (2002), Inductive Confidence Machines for Regression, ECML
3Lei et al. (2018), Distribution-Free Predictive Inference for Regression, JRSS B
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Standard mean-regression SCP: formally

1. Split randomly the training data into a proper training set

(size #Tr) and a calibration set (size #Cal)

2. Train your algorithm on the proper training set to obtain Â

3. On the calibration set, get prediction values with Â

4. Obtain a set of #Cal+ 1 conformity scores:

S = {S (i) = |Â
(
X (i)

)
− Y (i)|, i ∈ Cal} ∪ {+∞}

(+ worst-case scenario)

5. Compute the 1− α quantile of these scores, noted q1−α (S)
6. For a new point X (n+1), output

Ĉα

(
X (n+1)

)
=

[
Â
(
X (n+1)

)
− q1−α (S); Â

(
X (n+1)

)
+ q1−α (S)

]
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SCP theoretical foundation

Definition (Exchangeability)(
X (i),Y (i)

)n
i=1

are exchangeable if for any permutation σ of
J1, nK we have:

L
((
X (1),Y (1)

)
, . . . ,

(
X (n),Y (n)

))
= L

((
X (σ(1)),Y (σ(1))

)
, . . . ,

(
X (σ(n)),Y (σ(n))

))
,

where L designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

• The components of N



m
...
...

m

 ,


σ2

. . . γ2

γ2 . . .

σ2




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SCP: theoretical guarantees

SCP enjoys finite sample guarantees proved in Vovk et al. (2005);

Lei et al. (2018).

Theorem

Suppose
(
X (i),Y (i)

)n+1

i=1
are exchangeable (or i.i.d.). SCP applied

on
(
X (i),Y (i)

)n
i=1

outputs Ĉα

(
X (n+1)

)
such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (i)

}
i∈Cal

are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α+

1

#Cal+ 1
.

✗ Marginal coverage: P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
������|X (n+1) = x

}
≥ 1− α
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Standard mean-regression SCP is not adaptive

0 2 4
X
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0

2

Y

▶ Predict with µ̂

▶ Build Ĉα(x):

[µ̂(x)± q1−α (S)]
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Conformalized Quantile Regression (CQR)4
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4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4

0 2 4
X

−2.5

0.0

2.5

5.0

Y ▶ Learn (or get) Q̂Rα/2

and Q̂R1−α/2

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4

0 2 4
X

−2.5

0.0

2.5

5.0

Y

+
+ + +

+ ++
-- -

-

▶ Predict with Q̂Rα/2 and

Q̂R1−α/2

▶ Get the scores

S =
{
S (i)

}
Cal

∪ {+∞}
▶ Compute the (1− α)

empirical quantile of S,
noted q1−α (S)

↪→ S (i) := max
{
Q̂Rα/2

(
X (i)

)
− Y (i),Y (i) − Q̂R1−α/2

(
X (i)

)}
4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Conformalized Quantile Regression (CQR)4

0 2 4
X

−2.5

0.0

2.5

5.0

Y ▶ Predict with Q̂Rα/2 and

Q̂R1−α/2

▶ Build

Ĉα(x) = [Q̂Rα/2(x)− q1−α (S); Q̂R1−α/2(x) + q1−α (S)]

4Romano et al. (2019), Conformalized Quantile Regression, NeurIPS
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Generalization: SCP is defined by the conformity scores

1. Split randomly the training data into a proper training set (size

#Tr) and a calibration set (size #Cal)

2. Train your algorithm on the proper training set to obtain Â

3. On the calibration set, obtain #Cal+ 1 conformity scores

S = {S (i) = s
(
X (i),Y (i)

)
, i ∈ Cal} ∪ {+∞}

Ex 1: s (x , y) = |Â(x)− y | in mean-regression with standard scores

Ex 2: s (x , y) = max
(
Q̂Rα/2(x)− y , y − Q̂R1−α/2(x)

)
in CQR

4. Compute the 1− α quantile of these scores, noted q1−α (S)
5. For a new point X (n+1), return

Ĉα

(
X (n+1)

)
:= {y such that s (Â

(
X (n+1)

)
, y) ≤ q1−α (S)}

↪→ The definition of the conformity scores is crucial, as they incor-

porate almost all the information: data + underlying model
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SCP: theoretical guarantees generalized

SCP enjoys finite sample guarantees proved in Vovk et al. (2005);

Lei et al. (2018).

Theorem

Suppose
(
X (i),Y (i)

)n+1

i=1
are exchangeable (or i.i.d.). SCP applied

on
(
X (i),Y (i)

)n
i=1

outputs Ĉα

(
X (n+1)

)
such that:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≥ 1− α.

Additionally, if the scores
{
S (i)

}
i∈Cal

are a.s. distinct:

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)}
≤ 1− α+

1

#Cal+ 1
.

✗ Marginal coverage: P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
������|X (n+1) = x

}
≥ 1− α
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SCP: summary

Split conformal prediction is simple to compute and works:

• any regression (and classification link to classification ) algorithm

(neural nets, random forest...);

• distribution-free as long as the data is exchangeable;

• finite sample.

Two interests:

• quantify the uncertainty of the underlying model Â

• output predictive regions

Note that the theoretical guarantee is marginal over the joint

distribution of (X ,Y ), and not conditional. That is, there is no

guarantee that for any x ∈ R:

(((((((((((((((((((((((

P
{
Y (n+1) ∈ Ĉα

(
X (n+1)

)
|X (n+1) = x

}
≥ 1− α.
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Challenges and open directions (non-exhaustive references)

1. Providing a form of conditional guarantee

2. Tradeoffs between computational cost and statistical efficiency

(i.e. variability of the estimators, efficiency of the predictive sets)

3. Going beyond the exchangeability assumption

CP is a very active field of research. Many developments focus on

adapting CP to specific frameworks, such as: Survival Analysis

(Candès et al., 2023), Causal Inference (Lei and Candès, 2021; Jin

et al., 2023), NLP (Schuster et al., 2022), RL (Taufiq et al.,

2022), applications (medical (Angelopoulos et al., 2022; Lu et al.,

2022), energy (Kath and Ziel, 2021), etc.) and more.
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Missing values: ubiquitous in data science practice

Y X1 X2 X3 X4 X5 X6

22.42 0.55 0.67 0.03 0.75 0.05 0.05

8.26 0.72 0.18 0.55 0.05 0.73 0.50

19.41 0.60 0.58 NA NA NA 0.40
19.75 0.54 0.43 0.96 0.77 0.06 0.66

7.32 NA 0.19 NA 0.02 0.83 0.04
13.55 0.65 0.69 0.50 0.15 NA 0.87
20.75 0.43 0.74 0.61 0.72 0.52 0.35

9.26 0.89 NA 0.84 0.01 0.73 NA

9.68 0.963 0.45 0.65 0.04 0.06 NA

If each entry has a probability 0.01 of being missing:

d = 6 → ≈ 94% of rows kept

d = 300 → ≈ 5% of rows kept

One of the ironies of Big Data is that missing data play an ever

more significant role.5

5Zhu et al. (2019), High-dimensional PCA with heterogeneous missingness, JRSS B
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Handling missing values depends on pattern and mechanism

• (X ,Y ) ∈ Rd ×R random variables.

• M ∈ {0, 1}d is defined as Mj = 1 ⇔ Xj is missing.

M is called the mask or the missing pattern.

Example

We observe (NA, 6, 2)(−1, NA, 2)(−1, NA, NA). Then

m = (1, 0, 0)m = (0, 1, 0)m = (0, 1, 1).

There are 2d patterns (statistical and computational challenges).

• Three mechanisms6 can generate missing values.

↪→ Missing Completely At Random (MCAR):

P(M = m|X ) = P(M = m) for all m ∈ {0, 1}d . M ⊥⊥ X ,

missingness does not depend on the variables.

6Rubin (1976), Inference and missing data, Biometrika 16 / 36



Supervised learning with missing values

Impute-then-regress procedures are widely used.

1. Replace NA using an imputation function ϕ (e.g. the mean).

2. Train your algorithm (Random Forest, Neural Nets, etc.) on

the imputed data:

ϕ
(
X

(i)

obs(M(i))
,M(i)

)
︸ ︷︷ ︸

imputed X (i)

,Y (i)


n

k=1

.

✓: Le Morvan et al. (2021)7 show that for any deterministic

imputation and universal learner this procedure is Bayes-consistent.

✗: Ayme et al. (2022)8 show that even for very simple

distributions (linear model, Gaussian noise), may suffer from

curse of dimensionality.
7
Le Morvan et al. (2021), What’s a good imputation to predict with missing values?, NeurIPS

8
Ayme et al. (2022), Near-optimal rate of consistency for linear models with missing values, ICML
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Impute-then-regress+conformalization is marginally valid

To apply conformal prediction we need exchangeable data.

Lemma (Exchangeability after imp., Zaffran et al., 2023)

Assume
(
X (i),M(i),Y (i)

)n
i=1

are i.i.d. (or exchangeable).

Then, for any missing mechanism, for almost all imputation

function ϕ:(
ϕ
(
X

(i)

obs(M(i))
,M(i)

)
,Y (i)

)n

i=1
are exchangeable.

⇒ Conformal prediction applied on an imputed data set still enjoys

marginal guarantees9:

P
(
Y ∈ Ĉα

(
Xobs(M),M

))
≥ 1− α.

Even if the imputation is not accurate, the guarantee will hold.
9The upper bound also holds under continuously distributed scores.
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CQR performances on an illustrative example

Y = βTX + ε,

with β = (1, 2,−1)T , ε ⊥⊥ X and X and ε are Gaussian.
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1Warning: the predictive intervals cover properly marginally, but

suffer from high disparities depending on the missing patterns.
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Missing values induce heteroskedasticity

Theoretical study of the Gaussian linear model (Y = βTX + ε)

generalizes:

Proposition (Oracle intervals under the Gaussian lin. mod.)

L∗
α(m) = 2× q

N (0,1)
1−α/2 ×

√
βT
mis(m)Σ

m
mis|obsβmis(m) + σ2

ε .

• Even with an homoskedastic noise, missingness generates

heteroskedasticity

• The uncertainty increases when missing values are

associated with larger regression coefficients (i.e. the

most predictive variables)
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Goal: validity conditionally to the mask

Goal: for any m ∈ M ⊂ {0, 1}d :

P
(
Y ∈ Ĉα

(
Xobs(M),M

)
|M = m

)
≥ 1− α.

Motivation: equity, first-step-towards-conditional.
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Issue during the calibration step

0 2 4
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▶ Predict with Q̂Rα/2 and

Q̂R1−α/2

▶ Get the scores

S =
{
S (i)

}
Cal

∪ {+∞}
▶ Compute the (1− α)

empirical quantile of S,
noted q1−α (S)
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Infeasible solution: splitting the calibration set10 for each mask

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 6 0 1

Test point

-1 -10 6 1

Calibration set used

Initial calibration set

3 1

Test point

0 1

Calibration set used

10Romano et al. (2020), With Malice Toward None: Assessing Uncertainty via

Equalized Coverage, Harvard Data Science Review
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Missing data augmentation of the calibration set

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

0 1

Calibration set used
Initial calibration set

↪→ S (i) := max
{
Q̂Rα/2

(
X̃ (i)

)
− Y (i),Y (i) − Q̂R1−α/2

(
X̃ (i)

)}
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CQR-MDA with exact masking in words

1. Split the training set into a proper

training set and calibration set
2. Train the imputation function on the proper training set

3. Impute the proper training set

4. Train the quantile regressors on the

imputed proper training set

5. For a test point
(
X (n+1),M(n+1)

)
: 3 1

5.1 For each j ∈ J1, dK s.t. M
(n+1)
j = 1, set

M̃
(i)
j = 1 for i in Cal s.t. M(i) ⊂ M(n+1)

-1 1

4 2

0 1

5.2 Impute the new calibration set

5.3 Compute the calibration correction, i.e. q1−α(S)
5.4 Impute the test point

5.5 Predict with the quantile regressors and the correction

previously obtained, q1−α(S) 25 / 36



Mask conditional validity

Theorem (Zaffran et al., 2023)

If the data is exchangeable and MCAR, then for almost all

imputation function the proposed methodology is such that for

any m ∈ {0, 1}d :

P
(
Y ∈ Ĉα

(
Xobs(M),M

)
|M = m

)
≥ 1− α,

and if additionally the scores are almost surely distinct:

P
(
Y ∈ Ĉα

(
Xobs(M),M

)
|M = m

)
≤ 1− α+

1

1 +#Calm
.
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Empirical coverages
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Empirical lengths
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Some settings

• Imputation by iterative ridge (∼ conditional expectation)

• Concatenate the mask in the features

• Neural network, fitted to minimize the pinball loss

• (Semi)-synthetic experiments:

◦ MCAR missing values, with probability 20%

◦ 100 repetitions
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Synthetic experiments (Gaussian linear model, d = 10)
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Before more experiments, visualisation
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Semi-synthetic experiments

0.825 0.850 0.875 0.900
Average coverage

400

410

420

430

440

450

A
ve
ra
ge

le
n
gt
h

bike (d = 18, l = 4)

QR
CQR
CQR-MDA-Exact

Marginal
Lowest
Highest

1 32 / 36



TraumaBase®: decision support for trauma patients

• 30 hospitals

• More than 30 000 trauma patients

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of platelets upon arrival at hospital, given 7

covariates chosen by medical doctors.

These covariates are not always observed: from 0% to 24% of

missing values by features, with a total average of 7%.
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Real data experiment: TraumaBase®, critical care medicine
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Introduction to (Split) Conformal Prediction

Quantifying Predictive Uncertainty with Missing Values

Conclusion



Extensions

• Consistency of universal quantile learner when chained with

almost any imputation function.

• CP-MDA-Nested link to CP-MDA-Nested , an algorithm which does

not discard any calibration point.
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https://mzaffran.github.io/uq-na/


Take-home-messages

• CP marginal guarantees hold on the imputed data set.

• Missingness introduces additional heteroskedasticity, creating

a need for quantile regression based methods.

• CQR fails to attain coverage conditional on the missing

pattern.

• Missing data augmentation is the first method to output

predictive intervals with missing values.

• Missing data augmentation attains conditional coverage with

respect to the missing pattern (in MCAR setting).

36 / 36



Thank you!
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Appendix



Quantile regression
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Warning

No theoretical guarantee with a finite sample

P
(
Y ∈

[
Q̂Y |X (β/2); Q̂Y |X (1− β/2)

])
̸= 1− β



SCP: what choices for the regression scores?

Standard SCP Locally weighted SCP CQR

Vovk et al. (2005) Lei et al. (2018) Romano et al. (2019)

s (X ,Y ) |Â(X )− Y | |Â(X )−Y |
ρ̂(X )

max(Q̂Rα/2(X )− Y ,

Y − Q̂R1−α/2(X ))

Ĉα(x)
[
Â(x)± q1−α (S)

] [
Â(x)± q1−α (S)ρ̂(x)

] [Q̂Rα/2(x)− q1−α (S);

Q̂R1−α/2(x) + q1−α (S)]
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SCP in classification

(from C. Boyer and M. Zaffran tutorial)

https://claireboyer.github.io/tutorial-conformal-prediction/


SCP in classification

• Y (i) ∈ {1, . . . ,C} (C classes)

• Â(X ) = (p̂1(X ), . . . , p̂C (X )) (estimated probabilities)

• Score of the i-th calibration point: S (i) = 1− (Â
(
X (i)

)
)Y (i)

• For a new point X (n+1), return

Ĉα

(
X (n+1)

)
= {y such that s(Â

(
X (n+1)

)
, y) ≤ q1−α (S)}



SCP in classification in practice

Ex: Y (i) ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cal(i)

p̂dog
(
X (i)

)
p̂tiger

(
X (i)

)
p̂cat

(
X (i)

)
0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.15

0.60

0.25

0.15

0.55

0.30

0.20

0.50

0.30

0.15

0.45

0.40

0.15

0.40

0.45

0.25

0.35

0.40

0.20

0.45

0.35

S (i)
0.05 0.1 0.15 0.40 0.45 0.50 0.55 0.55 0.6 0.65

• q1−α(S) = 0.65 ⌈0.9× (10 + 1)⌉ = 10

• Â
(
X (n+1)

)
= (0.05, 0.60, 0.35)

↪→ s(Â
(
X (n+1)

)
, “dog”) = 0.95 “dog” /∈ Ĉα

(
X (n+1)

)
↪→ s(Â

(
X (n+1)

)
, “tiger”) = 0.40 ≤ q1−α(S)

“tiger” ∈ Ĉα

(
X (n+1)

)
↪→ s(Â

(
X (n+1)

)
, “cat”) = 0.65 ≤ q1−α(S) “cat” ∈ Ĉα

(
X (n+1)

)
• Ĉα

(
X (n+1)

)
= {“tiger”, “cat”}



SCP in classification in practice

Ex: Y (i) ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cal(i)

p̂dog
(
X (i)

)
p̂tiger

(
X (i)

)
p̂cat

(
X (i)

)
0.95

0.02
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0.05
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0.10

0.05

0.05
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0.05
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0.25

0.10

0.25
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0.30
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S (i)
0.05 0.1 0.15 0.15 0.20 0.25 0.30 0.35 0.40 0.45

• q1−α(S) = 0.45 ⌈0.9× (10 + 1)⌉ = 10

• Â
(
X (n+1)

)
= (0.05, 0.60, 0.35)

↪→ s(Â
(
X (n+1)

)
, “dog”) = 0.95 “dog” /∈ Ĉα

(
X (n+1)

)
↪→ s(Â

(
X (n+1)

)
, “tiger”) = 0.40 ≤ q1−α(S)

“tiger” ∈ Ĉα

(
X (n+1)

)
↪→ s(Â

(
X (n+1)

)
, “cat”) = 0.65 “cat” /∈ Ĉα

(
X (n+1)

)
• Ĉα

(
X (n+1)

)
= {“tiger”}



SCP in classification: comments on the naive version

• Facts about the previous method

◦ prediction sets with the smallest average size

◦ undercover hard subgroups

◦ overcover easy ones

• Other types of scores can be used to improve the conditional

coverage (as in regression with CQR or localized)



SCP in classification: Adaptive Prediction Sets

1. Sort in decreasing order p̂σi (1)

(
X (i)

)
≥ . . . ≥ p̂σi (C)

(
X (i)

)
2. S (i) =

∑σ−1
i (Y (i))

k=1 p̂σi (k)

(
X (i)

)
(sum of the estimated probabilities

associated

to classes at least as large as that of the true class Yi )

3. Return the classes σ(n+1)(1), . . . , σ(n+1)(r⋆) where

r⋆ = argmax
1≤r≤C

{
r∑

k=1

p̂σ(n+1)(k)

(
X (n+1)

)
< q1−α(S)

}
+ 1



SCP in classification in practice: Adaptive Prediction Sets

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cal(i)

p̂dog
(
X (i)

)
p̂tiger

(
X (i)

)
p̂cat
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X (i)
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• q1−α(S) = 0.95

• Ex 1: Â
(
X (n+1)

)
= (0.05, 0.45, 0.5), r⋆ = 2

Ĉα

(
X (n+1)

)
= {“tiger”, “cat”}

• Ex 2: Â
(
X (n+1)

)
= (0.03, 0.95, 0.02), r⋆ = 1

Ĉα

(
X (n+1)

)
= {“tiger”}



Jackknife/cross-val

(from C. Boyer and M. Zaffran tutorial)

https://claireboyer.github.io/tutorial-conformal-prediction/


Beyond the limitations of SCP

• SCP is computationally attractive: it only requires fitting the

model one time
• Problem: it sacrifices statistical efficiency

◦ requiring splitting the data into training and calibration

datasets

⇝ Full (or transductive) conformal prediction
◦ avoids data splitting

◦ at the cost of many more model fits

• Historically, full conformal prediction was developed first

• Idea: we know that the true label Y (n+1) lives somewhere in Y
so if we loop over all possible y ∈ Y, then we will eventually hit

the data point (X (n+1),Y (n+1)), which is statistically plausible

with the first n data points

• Hence the name as full conformal prediction directly computes

this loop



Full conformal prediction

Method: for a candidate (X (n+1), y),

1. Get Ây by training on

{
(
X (1),Y (1)

)
, . . . ,

(
X (n),Y (n)

)
} ∪ {(X (n+1), y)}

2. Scores

S =
{
s(Ây

(
X (i),Y (i)

)}
∪ {s(Ây

(
X (n+1)

)
, y)}

3. y ∈ Ĉα

(
X (n+1)

)
if s(Ây

(
X (n+1)

)
, y) ≤ q1−α(S)

✓ Theoretical guarantees (provided that the learining algorithm

handles exchangeable training data in a symmetric way)

✗ Computationally costly: not used in practice



Other methods for conformal prediction

︸ ︷︷ ︸
Quantile Out Of Bag (QOOB, Gupta et al., 2022)



Jackknife: naive predictive interval

• Based on leave-one-out (LOO) residuals

• Dn =
{(

X (1),Y (1)
)
, . . . ,

(
X (n),Y (n)

)}
training data

• Get Â−i by training on Dn \
(
X (i),Y (i)

)
• LOO scores S =

{
|Â−i

(
X (i)

)
− Y (i)|

}
i
∪ {+∞} (in standard

reg)

• Get Â by training on Dn

• Build the predictive interval:
[
Â
(
X (n+1)

)
± q1−α(S)

]
Warning

No guarantee on the prediction of Â with scores based on (Â−i )i



Jackknife+ (Barber et al., 2021b)

• Based on leave-one-out (LOO) residuals

• Dn =
{(

X (1),Y (1)
)
, . . . ,

(
X (n),Y (n)

)}
training data

• Get Â−i by training on Dn \
(
X (i),Y (i)

)
• LOO predictions (in standard reg)

Sup/down =
{
Â−i

(
X (n+1)

)
± |Â−i

(
X (i)

)
− Y (i)|

}
i
∪ {±∞}

• Build the predictive interval:
[
qα/2(Sdown); q1−α/2(Sup)

]
Theorem

If Dn ∪ (X (n+1),Y (n+1)) are exchangeable and the algorithm treats the

data points symmetrically, then P(Y (n+1) ∈ Ĉα

(
X (n+1)

)
) ≥ 1− 2α.



CV+ (Barber et al., 2021b)

• Based on cross-validation residuals

• Dn =
{(

X (1),Y (1)
)
, . . . ,

(
X (n),Y (n)

)}
training data

1. Split Dn into K folds F1, . . . ,FK

2. Get Â−Fk by training on Dn \ Fk
3. Cross-val predictions (in standard reg)

Sup/down =

{{
Â−Fk

(
X (n+1)

)
± |Â−Fk

(
X (i)

)
− Y (i)|

}
i∈Fk

}
k

∪ {±∞}

4. Build the predictive interval: [qα(Sdown); q1−α(Sup)]

Theorem

Under data exchangeability and algorithm symmetry, then

P(Y (n+1) ∈ Ĉα

(
X (n+1)

)
) ≥ 1− 2α−min

(
2(1−1/K)
n/K+1 , 1−K/n

K+1

)
≥ 1− 2α−

√
2/n.



CP-MDA-Nested



CP-MDA-Exact reminder

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

0 1

Calibration set used
Initial calibration set



What if we kept all individuals?

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

5

0 1

Calibration set usedInitial calibration set



Idea: modify the test point accordingly

-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

Test point

-1 1

4 2

5

0 1

Calibration set used

Initial calibration set 3 1

3 1

3

3 1

and

Temporary test points



CQR-MDA with nested masking in words

1. For a test point
(
X (n+1),M(n+1)

)
: 3 1

1.1 Set M̃(i) = max(M(i),M(n+1)) for i

in the calibration set

-1 1

4 2

5

0 1

1.2 Impute the new calibration set

1.3 For each augmented calibration point i :

1.3.1 Get its score S (i)

1.3.2

Impute-then-predict on the augmented

test point (X (n+1), M̃(i)), giving:

Q̂Rα/2(X̃
(n+1),i ) and Q̂R1−α/2(X̃

(n+1),i )

3 1

3 1

3

3 1

1.3.3 Compute the corrected prediction interval:

[Q̂Rα/2(X̃
(n+1),i )−S (i); Q̂R1−α/2(X̃

(n+1),i )+S (i)] :=
[
Z

(i)
inf ;Z

(i)
sup

]
1.4 Compute the quantiles qα({Z (i)

inf }i∈Cal) and q1−α({Z (i)
sup}i∈Cal)

1.5 Predict [qα({Z (i)
inf }i∈Cal); q1−α({Z (i)

sup}i∈Cal)]



Summary of CP-MDA

Test point

Initial calibration set

CP-MDA with exact masking:
calibration set

CP-MDA with nested masking:-1 -10 6 1

4 -2 2

5 1 1

0 1

3 1

-1 1

4 2

5

0 1

-1 1

4 2

0 1

and

3 1

3 1

3

3 1

calibration set temporary test points



Towards asymptotic individualized coverage



Consistency of a universal quantile learner after imputation

Let Φ be an imputation function chosen by the user.

Denote

g∗
β,Φ ∈ argmin

g :Rd→R
E
[
ρβ(Y − g ◦ Φ(Xobs(M),M))

]
:= Rβ,ϕ(g).

Comparison with: argmin
f

E
[
ρβ(Y − f (Xobs(M),M))

]
(informal).

Proposition (Pinball-consistency of an universal learner)

For almost all C∞ imputation function Φ, the function g∗
β,Φ ◦Φ is

Bayes optimal for the pinball-risk of level β.

↪→ any universally consistent algorithm for quantile regression

trained on the data imputed by Φ is pinball-Bayes-consistent.

This is an extension of the result of Le Morvan et al. (2021).



Asymptotic conditional coverage of a universal quantile learner

Corollary

For any missing mechanism, for almost all C∞ imputation

function Φ, if FY |(Xobs(M),M) is continuous, a universally

consistent quantile regressor trained on the imputed data set

yields asymptotic conditional coverage.

↪→ P(Y ∈ Ĉα(x)|X = x ,M = m) ≥ 1− α for any m ∈ M and any

x ∈ Rd , asymptotically with a super quantile learner.



d = 3



Data generation

(X ,Y ) ∈ R3 ×R.
Y = βX + ε

with ε ∼ N (0, 1), β = (1, 2,−1) and

(X1,X2,X3) ∼ N


 1

1

1

 ,

 1 0.8 0.8

0.8 1 0.8

0.8 0.8 1


.

All components of X each have a probability 0.2 of being missing,

Completely At Random.



Simulation settings

• Method: CQR

• Basemodel: neural network

• 200 repetitions

◦ train size of 250 points

◦ calibration size of 250 points

◦ test size of 2000 points



d = 10, with missing data augmentation



Data generation

(X ,Y ) ∈ R10 ×R.
Y = βX + ε

with ε ∼ N (0, 1), β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3)

and (X1, · · · ,X10) ∼ N
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...
...

1
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. . . 0.8
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
.

All components of X each have a probability 0.2 of being missing,

Completely At Random.



Simulation settings

• Method: CQR

• Basemodel: neural network

• Imputation: iterative (≈ conditional expectation)

• Mask as features: yes

• 100 repetitions

◦ train size of 500 points

◦ calibration size of 250 points

◦ test size of 100 points for each pattern size, and 2000 for

the marginal test set



Results per pattern size
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Simulation settings: varying training size

• Method: CQR

• Basemodel: neural network

• Imputation: iterative (≈ conditional expectation)

• Mask as features: yes

• 100 repetitions

◦ train size varies

◦ calibration size of 1000 points

◦ test size of 2000 points



Results on the worst group
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Results on the best group
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MAR missingness
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MNAR self masked missingness
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MNAR quantile censorship missingness
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Semi-synthetic experiments with

CQR-MDA-Nested



Semi-synthetic experiments with CQR-MDA-Nested
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Semi-synthetic experiments with CQR-MDA-Nested
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Semi-synthetic experiments with CQR-MDA-Nested
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Semi-synthetic experiments with CQR-MDA-Nested
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TraumaBase®



TraumaBase®: decision support for trauma patients

• 30 hospitals

• More than 30 000 trauma patients

• 4 000 new patients per year

• 250 continuous and categorical variables

↪→ Many useful statistical tasks

Predict the level of platelets upon arrival at hospital, given 7

covariates chosen by medical doctors.

These covariates are not always observed.



Data set description i

• Age: the age of the patient (no missing values);

• Lactate: the conjugate base of lactic acid, upon arrival at

the hospital (17.66% missing values);

• Delta hemo: the difference between the hemoglobin upon

arrival at hospital and the one in the ambulance (23.82%

missing values);

• VE: binary variable indicating if a Volume Expander was

applied in the ambulance. A volume expander is a type of

intravenous therapy that has the function of providing volume

for the circulatory system (2.46% missing values);

• RBC: a binary index which indicates whether the transfusion of

Red Blood Cells Concentrates is performed (0.37% missing

values);



Data set description ii

• SI: the shock index. It indicates the level of occult shock

based on heart rate (HR) and systolic blood pressure (SBP),

that is SI = HR
SBP , upon arrival at hospital (2.09% missing

values);

• HR: the heart rate measured upon arrival of hospital (1.62%

missing values).



Results with CQR-MDA-Nested
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